题目描述

Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 ≤ K ≤ 30). For example, cows exhibiting feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on.

FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i.

Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.

神牛小R在许多方面都有着很强的能力,具体的说,他总共有m种能力,并将这些能力编号为1到m。他的能力是一天一天地提升的,每天都会有一些能力得到一次提升,R对每天的能力提升都用一个数字表示,称之为能力提升数字,比如数字13,转化为二进制为1101,并且从右往左看,表示他的编号为1,3,4的能力分别得到了一次提升。小R把每天表示能力提升的数字的记了下来,如果在连续的一段时间内,小R的每项能力都提升了相同的次数,小R就会称这段时间为一个均衡时期,比如在连续5天内,小R的每种能力都提升了4次,那么这就是一个长度为5的均衡时期。

于是,问题来了,给出 小R n天的能力提升数字,请求出均衡时期的最大长度。

【数据规模】对于50%的数据,N <= 1000。

输入输出格式

输入格式:

第一行有两个整数n,m,表示有n天,m种能力。接下来有n行,每行有一个整数,分别表示第1到n天的能力提升数字。能力提升数字转化为二进制后,从右到左的每一位表示对应的能力是否在当天得到了一次提升。

n<=100000, m<=30

输出格式:

输出只有一个整数,表示长度最大的均衡时期的长度。

输入输出样例

输入样例#1:
复制

7 3
7
6
7
2
1
4
2
输出样例#1: 复制

4

说明

【样例解释】

每天被提升的能力种类分别为:

第一天:1,2,3

第二天:2,3

第三天:1,2,3

第四天:2

第五天:1

第六天:3

第七天:2

第三天到第六天为长度最长的均衡时期

因为 这四天 每种能力分别提升了 2次

可以想到考虑一个前缀和;

对于均衡区间:

sum[r]_1-sum[l-1]_1=sum[r]_2-sum[l-1]_2=......=sum[r]_m-sum[l-1]_m;

我们用 map存入,然后如果在 map中出现了当前的结果 ,更新最大值;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m;
map<vector<int>, int>mp; int main() {
//ios::sync_with_stdio(0);
rdint(n); rdint(m);
int ans = 0;
vector<int>vc(m);
mp[vc] = 0;
for (int i = 1; i <= n; i++) {
int x; rdint(x);
for (int j = 0; j < m; j++) {
if (x&(1 << j))vc[j]++;
}
if (x & 1)for (int j = 0; j < m; j++)vc[j]--;
if (mp.count(vc)) {
ans = max(ans, i - mp[vc]);
}
else mp[vc] = i;
}
cout << ans << endl;
return 0;
}

[USACO07MAR]黄金阵容均衡Gold Balanced L… map的更多相关文章

  1. 洛谷P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  2. 洛谷 P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  3. [USACO07MAR]黄金阵容均衡Gold Balanced L…

    https://www.luogu.org/problem/show?pid=1360 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many s ...

  4. [USACO07MAR]黄金阵容均衡Gold Balanced L…(洛谷 1360)

    题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to na ...

  5. [luoguP1360] [USACO07MAR]黄金阵容均衡Gold Balanced L…

    传送门 真的骚的一个题,看了半天只会个前缀和+暴力.. 纯考思维.. 良心题解 #include <cstdio> #include <cstring> #include &l ...

  6. 洛谷P1360 [USACO07MAR]黄金阵容均衡题解

    题目 不得不说这个题非常毒瘤. 简化题意 这个题的暴力还是非常好想的,完全可以过\(50\%\)的数据.但是\(100\%\)就很难想了. 因为数据很大,所以我们需要用\(O(\sqrt n)\)的时 ...

  7. [LuoguP1360][USACP07MAR]黄金阵容均衡

    [LuoguP1360][USACP07MAR]黄金阵容均衡(Link) 每天会增加一个数\(A\),将\(A\)二进制分解为\(a[i]\),对于每一个\(i\)都增加\(a[i]\),如果一段时间 ...

  8. 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)

    P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...

  9. 哈希-Gold Balanced Lineup 分类: POJ 哈希 2015-08-07 09:04 2人阅读 评论(0) 收藏

    Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13215 Accepted: 3873 ...

随机推荐

  1. FileInputStream 原理总结 把文件作为字节流进行读操作

    package io; import java.io.FileInputStream; import java.io.IOException; public class IOUtil { /** * ...

  2. noip不知道哪年 货车运输

    题意:最大生成树上找 q组两个点的lca 然后求出u->lca->v这条路径上的最小边 倍增大法好 # include <iostream> # include <std ...

  3. bzoj 4766: 文艺计算姬 矩阵树定理

    题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...

  4. 洛谷【P2115】[USACO14MAR]破坏Sabotage

    我对二分的理解:https://www.cnblogs.com/AKMer/p/9737477.html 题目传送门:https://www.luogu.org/problemnew/show/P21 ...

  5. GrayCode for state machine

    How & Why use Gray Code A gray counter is a binary counter where only one bit changes at a time. ...

  6. HDU3018:Ant Trip(欧拉回路)

    Ant Trip Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. wpf 可视化树的注意点

    将控件的visibility 设置为collapse时,控件的可视化树并未生成,此时并不能查找到控件内的子控件. 若某控件想对用户不可见,且可以生成可视化树,则需将控件的visibility 设置为h ...

  8. CentOS 配置RDP

    XRDP服务器 CentOS安装XRDP实现远程桌面访问: 由于安装的是远程桌面,因此需要安装桌面显示服务:# yum install vnc-server 下面开始配置XRDP服务 l  配置环境: ...

  9. js数组与 json 的区别

    一,数组 1. 定义一维数组:var s1=new Array(); s1=[1,2,3,4]或者s1[0]=1,s1[1]=2,s1[3]=3,s1[4]=4; alert(s1[0]); 结果为1 ...

  10. 解决启动SQL Server Management Studio 17时报Cannot find one of more components...的问题

    刚装好SSMS 17.1准备体验,弹出: 一番搜索,普遍办法都是安装VS2015独立shell.删除某个注册表项什么的,没用,首先这个shell我是装了的,然后也没有那个注册表项.我自己尝试过重装sh ...