一、

1.什么是hash index

A hash index is built on a hash table and is useful only for exact lookups that use every column in the index.

For each row, the storage engine computes a hash code of the indexed columns, which is a small value that will probably differ from the hash codes computed for other rows with different key values. It stores the hash codes in the index and stores a pointer to each row in a hash table.

In MySQL, only the Memory storage engine supports explicit hash indexes. They are the default index type for Memory tables, though Memory tables can have B-Tree indexes, too. The Memory engine supports nonunique hash indexes, which is unusual in the database world. If multiple values have the same hash code, the index will store
their row pointers in the same hash table entry, using a linked list.

2.hash index数据结构

  1. -- hash index的数据结构
  2. CREATE TABLE testhash (
  3. fname VARCHAR(50) NOT NULL,
  4. lname VARCHAR(50) NOT NULL,
  5. KEY USING HASH(fname)
  6. ) ENGINE=MEMORY;

3.hash index的缺点

Because the indexes themselves store only short hash values, hash indexes are very compact. As a result, lookups are usually lightning fast. However, hash indexes have some limitations:
• Because the index contains only hash codes and row pointers rather than the values themselves, MySQL can’t use the values in the index to avoid reading the rows.Fortunately, accessing the in-memory rows is very fast, so this doesn’t usually degrade performance.

• MySQL can’t use hash indexes for sorting because they don’t store rows in sorted order.
• Hash indexes don’t support partial key matching, because they compute the hash from the entire indexed value. That is, if you have an index on (A,B) and your query’s WHERE clause refers only to A , the index won’t help.
• Hash indexes support only equality comparisons that use the = , IN() , and <=> operators (note that <> and <=> are not the same operator). They can’t speed up range queries, such as WHERE price > 100 .
• Accessing data in a hash index is very quick, unless there are many collisions (multiple values with the same hash). When there are collisions, the storage engine must follow each row pointer in the linked list and compare their values to the lookup value to find the right row(s).
• Some index maintenance operations can be slow if there are many hash collisions.For example, if you create a hash index on a column with a very low selectivity (many hash collisions) and then delete a row from the table, finding the pointer from the index to that row might be expensive. The storage engine will have to examine each row in that hash key’s linked list to find and remove the reference to the one row you deleted.

The InnoDB storage engine has a special feature called adaptive hash indexes. When InnoDB notices that some index values are being accessed very frequently, it builds a hash index for them in memory on top of B-Tree indexes. This gives its B-Tree indexes some properties of hash indexes, such as very fast hashed lookups. This process is completely automatic, and you can’t control or configure it, although you can disable the adaptive hash index altogether.

高性能MySQL笔记-第5章Indexing for High Performance-002Hash indexes的更多相关文章

  1. 高性能MySQL笔记-第5章Indexing for High Performance-001B-Tree indexes(B+Tree)

    一. 1.什么是B-Tree indexes? The general idea of a B-Tree is that all the values are stored in order, and ...

  2. 高性能MySQL笔记-第5章Indexing for High Performance-004怎样用索引才高效

    一.怎样用索引才高效 1.隔离索引列 MySQL generally can’t use indexes on columns unless the columns are isolated in t ...

  3. 高性能MySQL笔记-第5章Indexing for High Performance-005聚集索引

    一.聚集索引介绍 1.什么是聚集索引? InnoDB’s clustered indexes actually store a B-Tree index and the rows together i ...

  4. 高性能MySQL笔记-第5章Indexing for High Performance-003索引的作用

    一. 1. 1). Indexes reduce the amount of data the server has to examine.2). Indexes help the server av ...

  5. 高性能MySQL笔记 第6章 查询性能优化

    6.1 为什么查询速度会慢   查询的生命周期大致可按照顺序来看:从客户端,到服务器,然后在服务器上进行解析,生成执行计划,执行,并返回结果给客户端.其中“执行”可以认为是整个生命周期中最重要的阶段. ...

  6. 高性能MySQL笔记 第5章 创建高性能的索引

    索引(index),在MySQL中也被叫做键(key),是存储引擎用于快速找到记录的一种数据结构.索引优化是对查询性能优化最有效的手段.   5.1 索引基础   索引的类型   索引是在存储引擎层而 ...

  7. 高性能MySQL笔记 第4章 Schema与数据类型优化

    4.1 选择优化的数据类型   通用原则   更小的通常更好   前提是要确保没有低估需要存储的值范围:因为它占用更少的磁盘.内存.CPU缓存,并且处理时需要的CPU周期也更少.   简单就好   简 ...

  8. 高性能MySQL笔记-第1章MySQL Architecture and History-001

    1.MySQL架构图 2.事务的隔离性 事务的隔离性是specific rules for which changes are and aren’t visible inside and outsid ...

  9. 高性能MySQL笔记-第4章Optimizing Schema and Data Types

    1.Good schema design is pretty universal, but of course MySQL has special implementation details to ...

随机推荐

  1. Codeforces Round #271 (Div. 2)D(递推,前缀和)

    很简单的递推题.d[n]=d[n-1]+d[n-k] 注意每次输入a和b时,如果每次都累加,就做了很多重复性工作,会超时. 所以用预处理前缀和来解决重复累加问题. 最后一个细节坑了我多次: print ...

  2. Python 3.5 socket OSError: [Errno 101] Network is unreachable

    /******************************************************************************** * Python 3.5 socke ...

  3. Buffer 和Cache 的区别

    Buffer 和Cache 的区别buffer 与cache 操作的对象就不一样.buffer

  4. shell while的用法

    1. #!/bin/shint=1while (( "$int < 10" ))doecho "$int"let "int++"don ...

  5. Bootstrap确定样式让屏幕缩小后布局不乱

    解决方案是如下 结果如下:

  6. 洛谷【P1048】采药

    浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html 题目传送门:https://www.luogu.org/problemnew/show/P ...

  7. 解决 No module named PyQt5.QtWebKitWidgets

    原因:在 PyQt 5.6(+) 版本中, 新增 QtWebEngineWidgets 代替QtWebKitWidgets. 示例代码:#coding: utf-8 import sysfrom Py ...

  8. Day3-Python基础3---函数递归和函数式方程

    一.函数的递归 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 递归特性: 1. 必须有一个明确的结束条件 2. 每次进入更深一层递归时,问题规模相比上次递归都应 ...

  9. Python 中的0 和 1 的意思

    Python程序语言指定任何非0和非空(null)值为true,0 或者 null为false,所以Python中的 1 代表 True,0代表False

  10. uptime命令查看系统启动时间和运行时间、查看linux系统负载

    1.uptime命令输出:16:11:40 up 59 days, 4:21, 2 users, load average: 0.00, 0.01, 0.00 2.查看/proc/uptime文件计算 ...