题目大意:给定高次方程an*x^n+...+a1*x^1+a0*x^0=0 求[1,m]区间内有多少个整数根

ai<=10^10000。m<=100W

懒得高精,考场上写的long double乱搞……30分打底50分顶天QAQ

当我最终搞定了各种非官方数据之后,我仅仅能长跪大地。手捧鲜花。仰望上苍高喊:哈希大法好!

首先阿贝尔在200年前告诉我们 五次以上方程没有求根公式 于是我们仅仅能枚举1~m 这个是100W

然后100W再加上1W位的精度 都不用运算直接就是跪…… 怎么办呢QAQ

哈希大法好!

令f(x)=an*x^n+...+a1*x^1+a0*x^0 易知若f(x)=0 则f(x) mod p=0

反之假设f(x) mod p=0 那么我们基本能够得出f(x)=0 p比較靠谱的时候碰撞率极低

所以我们把全部的ai都对p取模 然后对于每一个解O(n)验证就可以

这样是O(m*n)的 能够拿到70分 p比較靠谱的话不会挂

那么100分怎么办呢?

哈希大法好!

我们非常easy就会发现f(x+p) mod p=f(x) mod p

于是我们选择一个小一些的p。预处理出0~p-1全部的f(x),然后超过p的取模就可以

可是p不够大会挂啊!

于是我们多选择几个p 分别取一遍mod 仅仅有一个值对全部的p取模之后全都0才算作解

哈希大法好!

Hash Killer III至今无人AC就是在证明这个算法的正确性!

哈希万岁!哈希赛高!

哈希万年推!

时间复杂度O(nΣp+m) 当中Σp是选择的全部质数之和 一般选择1W左右的质数即可了

不知道为什么无论考场上拿了多少分仅仅要回来把题切了就算做精神AC了0.0……

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 110
using namespace std;
typedef long long ll;
const int prime[]={10007,11261,14843,19997,21893};
int n,m,stack[1001001],top;
ll a[M][5],f[21893][5];
inline ll F(int x,int j)
{
int i;
ll re=0;
for(i=n;~i;i--)
re=(re*x+a[i][j])%prime[j];
return re;
}
inline void Input(int x)
{
static char s[10100];
int i,j;
bool flag=false;
scanf("%s",s+1);
for(i=1;s[i];i++)
{
if(s[i]=='-')
flag=true;
else
for(j=0;j<5;j++)
a[x][j]=( (a[x][j]<<1) + (a[x][j]<<3) + s[i]-'0' )%prime[j];
}
if(flag)
for(j=0;j<5;j++)
a[x][j]=prime[j]-a[x][j];
}
int main()
{
int i,j;
cin>>n>>m;
for(i=0;i<=n;i++)
Input(i); for(j=0;j<5;j++)
for(i=0;i<prime[j];i++)
f[i][j]=F(i,j); for(i=1;i<=m;i++)
{
for(j=0;j<5;j++)
if(f[i%prime[j]][j])
break;
if(j==5)
stack[++top]=i;
} cout<<top<<endl;
for(i=1;i<=top;i++)
printf("%d\n",stack[i]);
}

NOIP 2014 D2T3 解方程 Hash大法好的更多相关文章

  1. NOIp 2014 #5 解方程 Label:数论?

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  2. 【UOJ #20】【NOIP 2014】解方程

    http://uoj.ac/problem/20 并不会做...然后看题解....... 对a取模,避免了高精度带来的复杂度,然后再枚举x判断是否满足模意义下等于0. 取5个模数,我直接抄的别人的_( ...

  3. 解方程(hash,秦九韶算法)

    题目描述 已知多项式方程: a0+a1x+a2x2+⋯+anxn=0 求这个方程在 [1,m]内的整数解(n 和 m 均为正整数). 输入输出格式 输入格式: 共 n+2 行. 第一行包含 2个整数 ...

  4. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  5. luogu2312 解方程 (数论,hash)

    luogu2312 解方程 (数论,hash) 第一次外出学习讲过的题目,然后被讲课人的一番话惊呆了. 这个题,我想着当年全国只有十几个满分.....然后他又说了句我考场A这道题时,用了5个模数 确实 ...

  6. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  7. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  8. 洛谷 P2312 解方程

    题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...

  9. Hash大法

    内容参考<算法竞赛进阶指南> 之前集训的时候听老师讲过,字符串题目中,hash一般不是正解,但是是一个优秀的暴力,可以拿比较多的部分分. hash涉及内容很多,这里只讨论字符串hash 可 ...

随机推荐

  1. 接口测试之post和get的区别

    post和get都可以给服务器发送请求,在做接口测试的时候,我发现有些时候某些功能的接口文档中是用post请求发送的, 但是只要接口一致参数一致用post也能发送请求,并且获取到的返回也是正确的. 那 ...

  2. Python-S9——Day100-Web前端框架之Vue

    01 课程简介: 02 let和const: 03 箭头函数: 04 对象的单体模式: 05 nodejs介绍和npm操作: 06 webpack.babel介绍和vue的第一个案例: 07 昨日内容 ...

  3. [oldboy-django][2深入django]FBV + CBV + 装饰器

    FBV django CBV & FBV - FBV function basic view a. urls 设置 urls(r'^test.html$', views.test) b. vi ...

  4. ls 的顺序与倒序排列

    linux 中文件夹的文件按照时间倒序或者升序排列 1,按照时间升序 ls -lrt -l use a long listing format 以长列表方式显示(详细信息方式) -t sort by ...

  5. C#中静态变量和 静态方法的作用

    1.静态变量 在C#程序中,没有全局变量的概念,这意味着所有的成员变量只有该类的实例才能操作这些数据,这起到了“信息隐藏”的作用.但有些时候,这样做却不是个明智的选择. 假设我们要定义一个图书类,要求 ...

  6. HDU3018 几笔画(非1笔)

    Ant Trip Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. 【转】BehaviorDesigner学习

    BehaviorDesigner学习   行为树: 行为树设计师插件是一个专门为unity设计的AI插件. 通过继承Behavior中的Task下的四个节点,可以创建自己的行为树节点. 行为树中的自定 ...

  8. Log4j官方文档翻译(四、如何在java中输出日志消息)

    我们已经创建来配置文件,本章详细的介绍下如何生成调试信息,并把他们转化成文本文件. 基本的例子 下面就是创建的一个基本的例子: log4j.properties的内容为: log = /usr/hom ...

  9. [SDOI2011][bzoj2245] 工作分配 [费用流]

    题面 传送门 思路 数据范围n,m<=250 分配任务问题 这是典型的"看到数据范围就知道算法"类型 而且我们发现我们要保证一定产出的情况下最小化花费 这句话等价于保证一定流 ...

  10. nodeJS学习(2)--- NPM 使用介绍

    前言:express 推出了4.X,自己尝试了一下,出现了各种问题.结果查看了各种文档和问题,现在在这个给大家分享下4.X版本的安装. NPM 使用介绍 NPM是随同NodeJS一起安装的包管理工具, ...