XSY 1749 tree
题目大意
给定一棵基环树, 问你有多少条路径的长度\(\ge K\).
点数\(\le 10^5\)
Solution
基环树分治模板题.
我是这样做的: 加边的时候用并查集维护点的连通性, 少加入环上的一条边, 使得基环图变为树的形态.
首先在树上进行一次常规的树分治. 我们能得到不经过被删除的一条边的满足要求的路径数量;
然后我们根据被删去的边的两个端点找到环, 在环上求出经过被删去边的路径数量即可.
#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
using namespace std;
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1; char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = (int)4e5;
int n, m, len;
int lp[2];
long long ans;
struct disjointSet
{
int pre[N + 1];
inline void initialize() {for(int i = 1; i <= n; ++ i) pre[i] = i;}
inline int access(int u)
{
if(pre[u] != u) pre[u] = access(pre[u]);
return pre[u];
}
}st;
struct segmentTree
{
struct node
{
node *suc[2];
int sz;
inline node() {for(int i = 0; i < 2; ++ i) suc[i] = NULL; sz = 0;}
}*rt;
void clear(node *u)
{
for(int i = 0; i < 2; ++ i) if(u->suc[i] != NULL) clear(u->suc[i]);
delete u;
}
inline void clear()
{
if(rt != NULL) clear(rt); rt = NULL; // 记得要把rt复位, 否则就会乱套啦
}
node* modify(node *u, int L, int R, int pos, int dlt)
{
if(u == NULL) u = new node;
u->sz += dlt;
if(L == R) return u;
if(pos <= L + R >> 1) u->suc[0] = modify(u->suc[0], L, L + R >> 1, pos, dlt);
else u->suc[1] = modify(u->suc[1], (L + R >> 1) + 1, R, pos, dlt);
return u;
}
inline void modify(int pos, int dlt)
{
rt = modify(rt, 1, n, pos, dlt);
}
int query(node *u, int L, int R, int pos)
{
if(u == NULL) return 0;
if(L >= pos) return u->sz;
if(pos > L + R >> 1) return query(u->suc[1], (L + R >> 1) + 1, R, pos);
else return query(u->suc[0], L, L + R >> 1, pos) + query(u->suc[1], (L + R >> 1) + 1, R, pos);
}
inline int query(int pos)
{
return query(rt, 1, n, pos);
}
}seg;
struct tree
{
struct node
{
vector<int> edg;
int flg, mx, sz;
int nxt, lst, len;
inline node() {edg.clear(); flg = 0;}
}nd[N + 1];
inline void addEdge(int u, int v)
{
int rtU = st.access(u), rtV = st.access(v);
if(rtU == rtV)
{
lp[0] = u, lp[1] = v;
return;
}
st.pre[rtU] = rtV;
nd[u].edg.push_back(v); nd[v].edg.push_back(u);
}
void getSize(int u, int pre)
{
// printf("%d\n", u);
nd[u].sz = 1; nd[u].mx = 0;
for(auto v : nd[u].edg) if(v != pre && ! nd[v].flg) getSize(v, u), nd[u].sz += nd[v].sz, nd[u].mx = max(nd[v].sz, nd[u].mx);
// for(vector<int>::iterator p = nd[u].edg.begin(); p != nd[u].edg.end(); ++ p)
// if(*p != pre && ! nd[*p].flg) getSize(*p, u), nd[u].sz += nd[*p].sz, nd[u].mx = max(nd[*p].sz, nd[u].mx);
}
int getRoot(int u, int pre, int cen)
{
nd[u].mx = max(nd[u].mx, nd[cen].sz - nd[u].sz);
int res = u;
for(auto v : nd[u].edg) if(v != pre && ! nd[v].flg)
{
int cur = getRoot(v, u, cen);
if(nd[cur].mx < nd[res].mx) res = cur;
}
return res;
}
void getAnswer(int u, int pre, int cur)
{
ans += seg.query(len - cur);
for(auto v : nd[u].edg) if(v != pre && ! nd[v].flg) getAnswer(v, u, cur + 1);
}
void update(int u, int pre, int cur)
{
seg.modify(cur, 1);
for(auto v : nd[u].edg) if(v != pre && ! nd[v].flg) update(v, u, cur + 1);
}
inline void work(int u)
{
getSize(u, -1);
u = getRoot(u, -1, u); nd[u].flg = 1;
seg.clear(); seg.modify(1, 1);
for(auto v : nd[u].edg) if(! nd[v].flg)
{
getAnswer(v, u, 1);
update(v, u, 2);
}
for(auto v : nd[u].edg) if(! nd[v].flg) work(v);
}
inline void work() {work(1);}
int getLoop(int u, int pre)
{
nd[u].lst = pre; nd[u].nxt = -1;
if(u == lp[1]) return u;
for(auto v : nd[u].edg) if(v != pre && nd[u].nxt == -1) nd[u].nxt = getLoop(v, u);
if(~ nd[u].nxt) return u;
nd[u].lst = -1;
return -1;
}
void getOutsideSize(int u, int pre, int cur, int opt)
{
seg.modify(cur, opt);
for(auto v : nd[u].edg) if(v != pre) getOutsideSize(v, u, cur + 1, opt);
}
void getOutsideSize(int u, int cur)
{
seg.modify(cur, 1);
nd[u].len = cur;
for(auto v : nd[u].edg) if(v != nd[u].nxt && v != nd[u].lst) getOutsideSize(v, u, cur + 1, 1);
if(~ nd[u].lst) getOutsideSize(nd[u].lst, cur + 1);
}
void getLoopAnswer(int u, int pre, int cur)
{
ans += seg.query(len - cur);
for(auto v : nd[u].edg) if(v != pre) getLoopAnswer(v, u, cur + 1);
}
void getLoopAnswer(int u, int cur)
{
seg.modify(nd[u].len, -1);
for(auto v : nd[u].edg) if(v != nd[u].nxt && v != nd[u].lst) getOutsideSize(v, u, nd[u].len + 1, -1);
ans += seg.query(len - cur);
for(auto v : nd[u].edg) if(v != nd[u].nxt && v != nd[u].lst) getLoopAnswer(v, u, cur + 1);
if(~ nd[u].nxt) getLoopAnswer(nd[u].nxt, cur + 1);
}
inline void workOnLoop()
{
getLoop(lp[0], -1);
seg.clear();
getOutsideSize(lp[1], 1);
getLoopAnswer(lp[0], 1);
}
}T;
int main()
{
#ifndef ONLINE_JUDGE
freopen("tree.in", "r", stdin);
freopen("tree.out", "w", stdout);
#endif
using namespace Zeonfai;
n = getInt(), m = getInt(), len = getInt();
st.initialize();
for(int i = 0, u, v; i < m; ++ i) u = getInt(), v = getInt(), T.addEdge(u, v);
T.work();
if(n == m) T.workOnLoop();
printf("%lld\n", ans);
}
XSY 1749 tree的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- 无限分级和tree结构数据增删改【提供Demo下载】
无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...
- 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>
在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 100 - Same Tree
题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode 笔记 101 - Symmetric Tree
题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...
随机推荐
- Python虚拟机类机制之descriptor(三)
从slot到descriptor 在Python虚拟机类机制之填充tp_dict(二)这一章的末尾,我们介绍了slot,slot包含了很多关于一个操作的信息,但是很可惜,在tp_dict中,与__ge ...
- 将FragmentManger事务添加到返回栈中
FragmentManger事务添加或替换的 Fragment 后,这时点击 Back 键,程序并不会返回添加之前的状态. 我们可以使用 Transaction 对象的 addToBackStack( ...
- 设计模式之第9章-原型模式(Java实现)
设计模式之第9章-原型模式(Java实现) “快到春节了,终于快放假了,天天上班好累的说.”“确实啊,最近加班比较严重,项目快到交付了啊.”“话说一到过节,就收到铺天盖地的短信轰炸,你说发短信就发吧, ...
- day05_07 标志位讲解
continue: 需求:大于5才打印 for i in range(10): if i<6 : continue print(i) continue作用:结束本次循环,继续下次循环 break ...
- 单元测试如何保证了易用的API
一般而言TDD的好处是以输出为导向及早发现问题,以及方便重构(单元测试保证).我理解,还有一个比较重要的意义是: 客观上强制了程序员写出更加友好的接口 方便测试和联调. 问题 这里我以c++举例,需求 ...
- random.nextInt方法用法
1.不带参数的nextInt()会生成所有有效的整数(包含正数,负数,0) 2.带参的nextInt(int x)则会生成一个范围在0~x(不包含X)内的任意正整数 例如:int x=new Rand ...
- Teleportation(tel)
Teleportation(tel) 题目描述 Zy大帝拥有n个星球,因为距离非常遥远,所以Zy在他所居住的1号星球和他的军事基地霸中所在的2号星球建造了两个传送门,这样从1号星球到2号星球就只需要2 ...
- Codeforces Round #440(Div.2)
一句话题意: A:给出两个长为\(n\),\(m\)的的数组,每个数在\(1\)到\(9\)之间,求出一个最小的数使得至少有一位出现在一个数组中,且至少有一位出现在另一个数组中.\(n,m\leq9\ ...
- Codeforces Round #363 (Div. 2) C dp或贪心 两种方法
Description Vasya has n days of vacations! So he decided to improve his IT skills and do sport. Vasy ...
- 【bzoj2882】工艺 最小表示法
[bzoj2882]工艺 2014年12月15日1,9020 Description 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长条工艺品 ...