2.8-2.10 HBase集成MapReduce
一、HBase集成MapReduce
1、查看HBase集成MapReduce需要的jar包
[root@hadoop-senior hbase-0.98.6-hadoop2]# bin/hbase mapredcp
2019-05-22 16:23:46,814 WARN [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-common-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/protobuf-java-2.5.0.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-client-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-hadoop-compat-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-server-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/hbase-protocol-0.98.6-hadoop2.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/high-scale-lib-1.1.1.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/zookeeper-3.4.5.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/guava-12.0.1.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/htrace-core-2.04.jar:
/opt/modules/hbase-0.98.6-hadoop2/lib/netty-3.6.6.Final.jar
2、
##开启yarn
[root@hadoop-senior hadoop-2.5.0]# sbin/yarn-daemon.sh start nodemanager
[root@hadoop-senior hadoop-2.5.0]# sbin/mr-jobhistory-daemon.sh start histryserver
[root@hadoop-senior hadoop-2.5.0]# sbin/mr-jobhistory-daemon.sh start historyserver ##HBase默认带的MapReduce程序都在hbase-server-0.98.6-hadoop2.jar里面,比较有用 [root@hadoop-senior hbase-0.98.6-hadoop2]# export HBASE_HOME=/opt/modules/hbase-0.98.6-hadoop2
[root@hadoop-senior hbase-0.98.6-hadoop2]# export HADOOP_HOME=/opt/modules/hadoop-2.5.0
[root@hadoop-senior hbase-0.98.6-hadoop2]# HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp` $HADOOP_HOME/bin/yarn jar $HBASE_HOME/lib/hbase-server-0.98.6-hadoop2.jar An example program must be given as the first argument.
Valid program names are:
CellCounter: Count cells in HBase table
completebulkload: Complete a bulk data load.
copytable: Export a table from local cluster to peer cluster
export: Write table data to HDFS.
import: Import data written by Export.
importtsv: Import data in TSV format.
rowcounter: Count rows in HBase table
verifyrep: Compare the data from tables in two different clusters. WARNING: It doesn't work for incrementColumnValues'd cells since the timestamp is changed after being appended to the log. #####
TSV
tab分割
>>student.tsv
1001 zhangsan 26 shanghai CSV
逗号分割
>>student.csv
1001,zhangsan,26,shanghai
二、编写MapReduce程序,集成HBase对表进行读取和写入数据
1、准备数据
##准备两张表,user:里面有数据,basic:没有数据
hbase(main):004:0> create 'basic', 'info'
0 row(s) in 0.4290 seconds
=> Hbase::Table – basic hbase(main):005:0> list
TABLE
basic
user
2 row(s) in 0.0290 seconds
=> ["basic", "user"] hbase(main):003:0> scan 'user'
ROW COLUMN+CELL
10002 column=info:age, timestamp=1558343570256, value=30
10002 column=info:name, timestamp=1558343559457, value=wangwu
10002 column=info:qq, timestamp=1558343612746, value=231294737
10002 column=info:tel, timestamp=1558343607851, value=231294737
10003 column=info:age, timestamp=1558577830484, value=35
10003 column=info:name, timestamp=1558345826709, value=zhaoliu
10004 column=info:address, timestamp=1558505387829, value=shanghai
10004 column=info:age, timestamp=1558505387829, value=25
10004 column=info:name, timestamp=1558505387829, value=zhaoliu
3 row(s) in 0.0190 seconds hbase(main):006:0> scan 'basic'
ROW COLUMN+CELL
0 row(s) in 0.0100 seconds
2、编写MapReduce,将user表中的数据导入到basic表中
package com.beifeng.senior.hadoop.hbase; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class User2BasicMapReduce extends Configured implements Tool { // Mapper Class
public static class ReadUserMapper extends TableMapper<Text, Put> { private Text mapOutputKey = new Text(); @Override
public void map(ImmutableBytesWritable key, Result value,
Mapper<ImmutableBytesWritable, Result, Text, Put>.Context context)
throws IOException, InterruptedException {
// get rowkey
String rowkey = Bytes.toString(key.get()); // set
mapOutputKey.set(rowkey); // --------------------------------------------------------
Put put = new Put(key.get()); // iterator
for (Cell cell : value.rawCells()) {
// add family : info
if ("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))) {
// add column: name
if ("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
put.add(cell);
}
// add column : age
if ("age".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
put.add(cell);
}
}
} // context write
context.write(mapOutputKey, put);
} } // Reducer Class
public static class WriteBasicReducer extends TableReducer<Text, Put, //
ImmutableBytesWritable> { @Override
public void reduce(Text key, Iterable<Put> values,
Reducer<Text, Put, ImmutableBytesWritable, Mutation>.Context context)
throws IOException, InterruptedException {
for(Put put: values){
context.write(null, put);
}
} } // Driver
public int run(String[] args) throws Exception { // create job
Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName()); // set run job class
job.setJarByClass(this.getClass()); // set job
Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs // set input and set mapper
TableMapReduceUtil.initTableMapperJob(
"user", // input table
scan, // Scan instance to control CF and attribute selection
ReadUserMapper.class, // mapper class
Text.class, // mapper output key
Put.class, // mapper output value
job //
); // set reducer and output
TableMapReduceUtil.initTableReducerJob(
"basic", // output table
WriteBasicReducer.class, // reducer class
job//
); job.setNumReduceTasks(1); // at least one, adjust as required // submit job
boolean isSuccess = job.waitForCompletion(true) ; return isSuccess ? 0 : 1;
} public static void main(String[] args) throws Exception {
// get configuration
Configuration configuration = HBaseConfiguration.create(); // submit job
int status = ToolRunner.run(configuration,new User2BasicMapReduce(),args) ; // exit program
System.exit(status);
} }
3、执行
##打jar包,并上传到$HADOOP_HOME/jars/ ##执行
export HBASE_HOME=/opt/modules/hbase-0.98.6-hadoop2
export HADOOP_HOME=/opt/modules/hadoop-2.5.0
HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp` $HADOOP_HOME/bin/yarn jar $HADOOP_HOME/jars/hbase-mr-user2basic.jar ##查看执行结果
hbase(main):004:0> scan 'basic'
ROW COLUMN+CELL
10002 column=info:age, timestamp=1558343570256, value=30
10002 column=info:name, timestamp=1558343559457, value=wangwu
10003 column=info:age, timestamp=1558577830484, value=35
10003 column=info:name, timestamp=1558345826709, value=zhaoliu
10004 column=info:age, timestamp=1558505387829, value=25
10004 column=info:name, timestamp=1558505387829, value=zhaoliu
3 row(s) in 0.0300 seconds
2.8-2.10 HBase集成MapReduce的更多相关文章
- HBase概念学习(七)HBase与Mapreduce集成
这篇文章是看了HBase权威指南之后,依据上面的解说搬下来的样例,可是略微有些不一样. HBase与mapreduce的集成无非就是mapreduce作业以HBase表作为输入,或者作为输出,也或者作 ...
- HBase 与 MapReduce 集成
6. HBase 与 MapReduce 集成 6.1 官方 HBase 与 MapReduce 集成 查看 HBase 的 MapReduce 任务的执行:bin/hbase mapredcp; 环 ...
- hbase运行mapreduce设置及基本数据加载方法
hbase与mapreduce集成后,运行mapreduce程序,同时需要mapreduce jar和hbase jar文件的支持,这时我们需要通过特殊设置使任务可以同时读取到hadoop jar和h ...
- hive与hbase集成
http://blog.csdn.net/vah101/article/details/22597341 这篇文章最初是基于介绍HIVE-705.这个功能允许Hive QL命令访问HBase表,进行读 ...
- Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结
转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...
- 《HBase in Action》 第三章节的学习总结 ---- 如何编写和运行基于HBase的MapReduce程序
HBase之所以与Hadoop是最好的伙伴,我理解就因为两点:1.HADOOP的HDFS,为HBase提供了分布式的存储方式:2.HADOOP的MR为HBase提供的分布式的计算方法.u 其中第一点, ...
- 3.12-3.16 Hbase集成hive、sqoop、hue
一.Hbase集成hive https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration 1.说明 Hive与HBase整合在一起 ...
- 新闻实时分析系统Hive与HBase集成进行数据分析 Cloudera HUE大数据可视化分析
1.Hue 概述及版本下载 1)概述 Hue是一个开源的Apache Hadoop UI系统,最早是由Cloudera Desktop演化而来,由Cloudera贡献给开源社区,它是基于Python ...
- 新闻实时分析系统Hive与HBase集成进行数据分析
(一)Hive 概述 (二)Hive在Hadoop生态圈中的位置 (三)Hive 架构设计 (四)Hive 的优点及应用场景 (五)Hive 的下载和安装部署 1.Hive 下载 Apache版本的H ...
随机推荐
- 虚幻4Matinee功能 基本概念及简单演示样例(Sequence编辑器)
虚幻4提供的Matinee功能十分强大,能够用来制作动画.录制视频. 它的核心想法是在Matinee编辑器内提供一套自己的时间坐标系,在这个相对时间内通过调节actor的属性来改变actor的状态,进 ...
- ruby on rails模拟HTTP请求错误发生:end of file reached
在文章 Ruby On Rails中REST API使用演示样例--基于云平台+云服务打造自己的在线翻译工具 中,利用ruby的Net::HTTP发起http请求訪问IBM Bluemix上的sour ...
- oracle sqlplus 常用操作
命令 含义 / 运行 SQL 缓冲区 ? [关键词] 对关键词提供 SQL 帮助 @[@] [文件名] [参数列表] 通过指定的参数,运行指定的命令文件 ACC[EPT] 变量 [DEF[AULT] ...
- align="absmiddle" 图片的中间上下对齐
align=absmiddle表示图像的中间与同一行中最大元素的中间对齐 AbsBottom 图像的下边缘与同一行中最大元素的下边缘对齐.AbsMiddle 图像的中间与同一行中最大元素的中间对齐.B ...
- Mac OS command line TestNG - “Cannot find class in classpath” error
直接eclipse执行.xml文件可以正确执行 在mac下执行却总报错: [TestNG] [Error] Cannot find class in classpath 最后解决办法,classpat ...
- Ubuntu 13.10上用户怎样获得root权限,用户怎样获得永久root权限,假设配置root登录
一.用户怎样获得root权限: 1. 进入terminal 2. 输入sudo passwd root 并设置password,提示要你输入两次password.自己设定password,一定要 ...
- EasyPusher/EasyDarwin/EasyPlayer实现手机直播版本及效果整理
EasyPusher手机直播 实现功能 最近很多EasyDarwin爱好者提出了手机移动端直播的功能需求,尤其是如何做出像映客这样能够快速出画面播放的效果,经过一段时间的移动端和服务端的优化,Easy ...
- Automating hybrid apps
Automating hybrid apps One of the core principles of Appium is that you shouldn’t have to change you ...
- appium(10)-iOS predictate
iOS predictate It is worth looking at ’-ios uiautomation’ search strategy with Predicates. UIAutomat ...
- 一些js及css样式
人体时钟: 源码: <div> <embed wmode="transparent" src="https://files.cnblogs.com/fi ...