量子隐形传态是量子纠缠的又一个应用。

隐形传态,所谓隐形的意思就是没有物质介质就传递了信息,在经典世界,传递信息要有介质,光、电磁波或者其他的什么,但是在量子的世界里,我可以把信息传递给你,并且不传递任何一个量子比特。

量子不能克隆原理

不能克隆就是说,没有任何一个U操作,可以输入\(|\psi\rangle\) 和 \(|0\rangle\) 然后得到输出 \(|\psi\rangle\) 和 \(|\psi\rangle\) 。

why?

若是真的有这么一个操作算符,如图a,可以复制任意的量子比特 \(|u\rangle\) 我们希望的结果如下:

输入:\((\alpha_0 | 0\rangle +\alpha_1 | 1\rangle)|0\rangle\)

输出:\((\alpha_0 | 0\rangle +\alpha_1 | 1\rangle)(\alpha_0 | 0\rangle +\alpha_1 | 1\rangle)\)

另一方面

我们希望输入是\(|00\rangle\)输出也是\(|00\rangle\),当输入变成\(|10\rangle\)后,输出也就变成\(|11\rangle\)

而要以上两种情况相等,只有一种可能,即\(|u\rangle\)是\(|0\rangle\)或者\(|1\rangle\)的时候,但是这样,也就没有叠加态的,这样复制的,也就是一个普通的bit。

Teleportation CNOT

那么,如果要把一个自己不知道是什么状态的 \(|u\rangle=\alpha_0 | 0\rangle +\alpha_1 | 1\rangle\) 传递,要怎么办呢?

图b是前面介绍过的CNOT门,有CNOT门,我们很容易就可以把 \(\alpha_0 | 00\rangle +\alpha_1 | 10\rangle\)变成 \(\alpha_0 | 00\rangle +\alpha_1 | 11\rangle\) 。

此时并没有被复制,因为第一个比特和第二个比特之间还是纠缠的,也就是说你测量第一个比特,第二个就会坍缩,你测量第二个,第一个也同理,信息并没有copy两份,所以量子不可复制原理没有被打破。

接下来我们要来处理第一个比特。

如果直接测量第一个比特,很明显,第二个比特就坍缩了。

但是测量还是要测的,不过不是在 \(| 0\rangle\) 、 \(| 1\rangle\) 基,而是在 \(| +\rangle\) 、 \(| -\rangle\) 基。

\[\begin{align}|\psi\rangle&=\alpha_0|00\rangle + \alpha_1|11\rangle\\&=\alpha_0(\frac{1}{\sqrt2}|+\rangle + \frac{1}{\sqrt2}|-\rangle)|0\rangle+\alpha_1(\frac{1}{\sqrt2}|+\rangle - \frac{1}{\sqrt2}|-\rangle)|1\rangle\\&=\frac{1}{\sqrt2}|+\rangle(\alpha_0|0\rangle + \alpha_1|1\rangle)+\frac{1}{\sqrt2}|-\rangle(\alpha_0|0\rangle - \alpha_1|1\rangle) \end{align}\]

在 \(| +\rangle\) 、 \(| -\rangle\) 基对第一个比特测量:
如果测量的结果是 \(|+\rangle\) ,那么第二比特的状态就是 \(\alpha_0 | 0\rangle +\alpha_1 | 1\rangle\) ,正好是我们最初想要传递的态。

如果测量的结果是 \(|-\rangle\) ,那么第二比特的状态就是 \(\alpha_0 | 0\rangle -\alpha_1 | 1\rangle\) ,再经过Z门的翻转就是我们最初想要传递的态了。

参考资料
Quantume Mechanics & Quantume Computation Lecture 5

量子隐形传态1 Quantum Teleportation的更多相关文章

  1. 预见未来丨机器学习:未来十年研究热点 量子机器学习(Quantum ML) 量子计算机利用量子相干和量子纠缠等效应来处理信息

    微软研究院AI头条 https://mp.weixin.qq.com/s/SAz5eiSOLhsdz7nlSJ1xdA 预见未来丨机器学习:未来十年研究热点 机器学习组 微软研究院AI头条 昨天 编者 ...

  2. [转帖]谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看?

    谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看? 投递人 itwriter 发布于 2019-10-24 15:46 评论(7) 有306人阅读 原文链接 [收藏] « » https:// ...

  3. 在 Visual Studio 中使用 Q# 进行量子编程

    1 量子计算机与量子编程 1.1 量子计算机 Quantum computing is computing using quantum-mechanical phenomena, such as su ...

  4. Quantum Bogo sort浅谈

    1.普通的猴子排序(bogo sort) 猴子排序百科 en.wikipedia.org/wiki/Bogosort 不停的随机打乱序列,然后检查,直到排好序 复杂度O(n*n!) while not ...

  5. 5000量子位支持量子编程,D-Wave推出下一代量子计算平台计划

    5000量子位支持量子编程,D-Wave推出下一代量子计算平台计划 近日,全球量子商用化重要参与者 D-Wave 公司又有大动作:推出其5000量子比特量子计算的发展蓝图.D-Wave 下一代量子计算 ...

  6. Quantum CSS,一个超快的CSS引擎

    开始 本文翻译自Inside a super fast CSS engine: Quantum CSS,如果想要阅读原文,可以点击前往,以下内容夹杂本人一些思考,翻译也并不一定完全. 碎碎念 为什么翻 ...

  7. 量子计算机编程(一)——QPU编程

    今天要给大家介绍的是这本书<Programming Quantum Computers -- Essential Algorithms and Code Samples>,主要讲如何在量子 ...

  8. Hawk 3. 网页采集器

    1.基本入门 1. 原理(建议阅读) 网页采集器的功能是获取网页中的数据(废话).通常来说,目标可能是列表(如购物车列表),或是一个页面中的固定字段(如JD某商品的价格和介绍,在页面中只有一个).因此 ...

  9. [转载]拜占庭问题深入讨论 from http://bitkan.com/news/topic/14011

    拜占庭将军问题深入探讨 了解过比特币和区块链的人,多少都听说过拜占庭将军问题,或听说过比特币(或区块链)的一个重要成就正是解决了拜占庭将军问题.但真正明白这个问题的人并不多,甚至知道这个问题实质的人都 ...

随机推荐

  1. python(13)- 文件处理应用Ⅱ:增删改查

    用户选择1,增加功能: 用户输入www.oldboy2.org和server 11111 weight 2222 maxconn 3333后, 在www.oldboy2.org下增加一条server信 ...

  2. mysql: 关于MySQL InnoDB锁行还是锁表?

          baidu zone - 关于MYSQL Innodb 锁行还是锁表,深入讲解

  3. VueJS处理逻辑指令:v-if

    HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  4. 怎样创建.NET Web Service http://blog.csdn.net/xiaoxiaohai123/article/details/1546941

    为什么需要Web Service 在通过internet网购买商品后,你可能对配送方式感到迷惑不解.经常的情况是因配送问题找配送公司而消耗你的大量时间,对于配送公司而言这也不是一项增值服务. 为了解决 ...

  5. 查看Laravel版本号的三种方法

    1:最简单的用命令行实现 php artisan --version 2:查看文件 vendor\laravel\framework\src\Illuminate\Foundation\Applica ...

  6. Ubuntu16.04下自定义命令

    每次启动pycharm的时候需要敲一段很长的文本,真的是感觉好麻烦啊,如果能直接敲命令启动就好了,既装B又实用的 那么到底应该怎么做呢?其实挺简单的 在文件/root/.bashrc 中添加下边的几行 ...

  7. vs2015终于配置完成了

    安装vs2015,本来应该直接安装vs2015withupdate3的,但是由于当时手上只有vs2015的包,于是直接安装了. 打开C++工程cntk的时候提示需要安装很多东西包括vc编译工具.pyt ...

  8. EasyDarwin开源手机直播方案:EasyPusher手机直播推送,EasyDarwin流媒体服务器,EasyPlayer手机播放器

    在不断进行EasyDarwin开源流媒体服务器的功能和性能完善的同时,我们也配套实现了目前在安防和移动互联网行业比较火热的移动端手机直播方案,主要就是我们的 EasyPusher直播推送项目 和 Ea ...

  9. [Phoenix] 四、加盐表

    摘要: 在密码学中,加盐是指在散列之前将散列内容(例如:密码)的任意固定位置插入特定的字符串.这个在散列中加入字符串的方式称为“加盐”.其作用是让加盐后的散列结果和没有加盐的结果不相同,在不同的应用情 ...

  10. java内部类和静态内部类的区别

    1 相同点 使用的时候,import的时候,除了包名,还要带外部类. 2 不同点 2.1 对象创建的方式不同 静态内部类创建对象的时候,独立于外部类及其对象,就好像它是一个独立的类,可以和外部类一样使 ...