N是完全平方数 <----> N有奇数个约数

设:N = n*n

充分性:

1、N=1时,N的约数为1,为奇数

2、N>1时,1.....n......N,其中 1, n, N为N的3个约数。若在1~n之间存在另外一个约数m1,则在n~N之间必存在约数N/m1,同理,有m2,则存在N/m2,即必有 (3 + 偶数)个,为奇数

必要性:

1、如果N的约数只有两个,那只能是1和N本身,则N是一个质数,肯定不是完全平方数

2、若N除了1和N本身之外,还存在另外一个约数m,则必存在约数N/m,所以N的约数为(2 + 偶数)个,为偶数

3、除非m与N/m相等,这样才能将“两个”约数合并为1个约数,产生奇数个约数。即 m = N/m , N = m*m,即,N是完全平方数

数论 N是完全平方数 充分必要条件 N有奇数个约数的更多相关文章

  1. 【LightOJ1336】Sigma Function(数论)

    [LightOJ1336]Sigma Function(数论) 题面 Vjudge 求和运算是一种有趣的操作,它来源于古希腊字母σ,现在我们来求一个数字的所有因子之和.例如σ(24)=1+2+3+4+ ...

  2. C#LeetCode刷题之#367-有效的完全平方数(Valid Perfect Square)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3869 访问. 给定一个正整数 num,编写一个函数,如果 num ...

  3. 莫比乌斯反演&各种筛法

    不学莫反,不学狄卷,就不能叫学过数论 事实上大概也不是没学过吧,其实上赛季头一个月我就在学这东西,然鹅当时感觉没学透,连杜教筛复杂度都不会证明,所以现在只好重新来学一遍了(/wq 真·实现了水平的负增 ...

  4. 2014年第五届蓝桥杯C/C++程序设计本科B组决赛

    1.年龄巧合(枚举) 2.出栈次序(推公式/Catalan数) 3.信号匹配(kmp) 4.生物芯片(完全平方数) 5.Log大侠(线段树) 6.殖民地 1.年龄巧合 小明和他的表弟一起去看电影,有人 ...

  5. #509. 「LibreOJ NOI Round #1」动态几何问题

    下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...

  6. 算法笔记_205:第五届蓝桥杯软件类决赛真题(C语言B组)

    目录 1 年龄巧合 2 出栈次序 3 信号匹配 4 生物芯片 5 Log大侠 6 殖民地   前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 年龄巧合 小明和他的表弟一起去看电影,有人问他们的年龄. ...

  7. nowcoder(牛客网)OI测试赛2 解题报告

    qwq听说是一场普及组难度的比赛,所以我就兴高采烈地过来了qwq 然后发现题目确实不难qwq.....但是因为蒟蒻我太蒻了,考的还是很差啦qwq orz那些AK的dalao们qwq 赛后闲来无事,弄一 ...

  8. leetcode有意思的题目总结

    231. 2的幂 2^3=8 得  8是2的幂 判断一个整数是不是2的幂,可根据二进制来分析.2的幂如2,4,8,等有一个特点: 二进制数首位为1,其他位为0,如2为10,4为100 2&(2 ...

  9. 蓝桥杯 历届试题 PREV-34 矩阵翻硬币

    历届试题 矩阵翻硬币   时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬 ...

随机推荐

  1. PS 抠图如何使用通道法处理头发

      通道抠图法抠出美女飘逸头发-PS抠图实例教程 抠图更换背景后效果图 通道抠图法抠出美女飘逸头发-PS抠图实例教程 教程步骤: 1  打开原图,进入通道面板. 通道抠图法抠出美女飘逸头发-PS抠图实 ...

  2. Eclipse 安装(Oxygen版本)

    Eclipse 安装(Oxygen版本) Eclipse 最新版本 Eclipse Neon,这个首次鼓励用户使用 Eclipse Installer 来做安装,这是一种由Eclipse Oomph提 ...

  3. Twitter网站架构分析介绍

    http://www.kaiyuanba.cn/html/1/131/147/7539.htm作为140个字的缔造者,twitter太简单了,又太复杂了,简单是因为仅仅用140个字居然使有几次世界性事 ...

  4. Selenium系列之--07 操作远程浏览器

    Selenium远程控制浏览,可以通过如下两种方式实现,本质上都是Selenium Grid a.  客户机启Selenium Standalone Server 作为远程服务,服务端通过调用Remo ...

  5. Android Volley分析(一)——结构

    Volley是Android系统下的一个网络通信库.为Android提供简单高速的网络操作(Volley:Esay, Fast Networking for Android),以下是它的结构: 既然是 ...

  6. docker&k8s填坑记

    本篇主要用于记录在实施docker和kubenetes过程中遇到的一个问题和解决办法. 本节部分内容摘自互联网,有些部分为自己在测试环境中遇到到实际问题,后面还会根据实际情况不断分享关于docker/ ...

  7. caffe搭建--caffe在invidia+cpu 酷睿2Q9300 + ubuntu16.04.2上面的安装和编译过程

    本文原创,转载请注明出处. ------------------------------------------------分割线-------------------------------- 概要 ...

  8. Nginx详细的安装教程(linux)

    转:https://blog.csdn.net/u013641234/article/details/73838472 Nginx作为一个web服务器,目前使用最多的就利用其负载均衡,本篇着重讲解的是 ...

  9. 一起学android之怎样卸载指定的 应用程序(25)

    效果图例如以下: 代码例如以下: public class MainActivity extends Activity { private Button btn_delete; @Override p ...

  10. centos6.4中文输入法安装和切换(转载)

    1.用root登录,或者切换到root账户(su root): 2.yum install "@Chinese Support"; 3.exit: 4.System→prefere ...