H. Qin Shi Huang's National Road System

Time Limit: 1000ms
Memory Limit: 32768KB

64-bit integer IO format: %I64d      Java class name: Main

 
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.

 

Input

The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.

 

Output

For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.

 

Sample Input

2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40

Sample Output

65.00
70.00 解题:此题跟次小生成树没多大关系,只是涉及到最小生成树的遍历问题。解题思路就是先求出最小生成树,存储这棵树,然后再在这棵树上进行去边操作,此时的两颗树上人口数最多的两个城市人口数的和 去除以 最小生成树的值减去此边的值 后的商,求这个商最大可能是多少。 Kruskal写法
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#define LL long long
#define INF 0x3f3f3f
using namespace std;
const int maxv = ;
const int maxe = *;
struct arc{
int u,v;
double w;
};
int uf[maxv];
vector<int>g[maxv];
arc e[maxe],tree[maxe];
int n,px[maxv],py[maxv],val[maxv];
int maxVal,es,ads;
double Minst;
bool vis[maxv];
bool cmp(const arc &x,const arc &y){
return x.w < y.w;
}
void dfs(int u){
vis[u] = true;
if(val[u] > maxVal) maxVal = val[u];
for(int i = ; i < g[u].size(); i++){
if(!vis[g[u][i]]) dfs(g[u][i]);
}
}
int findF(int x){
if(x != uf[x])
uf[x] = findF(uf[x]);
return uf[x];
}
double dis(int i,int j){
double temp = (px[i]-px[j])*(px[i]-px[j])+(py[i]-py[j])*(py[i]-py[j]);
return sqrt(temp);
}
void kruskal(){
for(int i = ; i < es; i++){
int x = findF(e[i].u);
int y = findF(e[i].v);
if(x != y){
Minst += e[i].w;
uf[x] = y;
g[e[i].u].push_back(e[i].v);
g[e[i].v].push_back(e[i].u);
tree[ads++] = e[i];
}
}
}
int main(){
int t,i,j;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i = ; i <= n; i++){
scanf("%d%d%d",px+i,py+i,val+i);
g[i].clear();
uf[i] = i;
}
ads = es = ;
Minst = ;
for(i = ; i <= n; i++)
for(j = i+; j <= n; j++){
e[es++] = (arc){i,j,dis(i,j)};
}
sort(e,e+es,cmp);
kruskal();
double ans = ,temp;
for(i = ; i < ads; i++){
int u = tree[i].u;
int v = tree[i].v;
memset(vis,false,sizeof(vis));
vis[v] = true;
temp = maxVal = ;
dfs(u);
temp += maxVal;
memset(vis,false,sizeof(vis));
maxVal = ;
vis[u] = true;
dfs(v);
temp += maxVal;
ans = max(ans,temp/(Minst-tree[i].w));
}
printf("%.2f\n",ans);
}
return ;
}

Prim写法:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxv = ;
const int maxe = *;
struct arc{
int u,v;
double w;
}e[maxe];
int px[maxv],py[maxv],val[maxv],pre[maxv];
double d[maxv],Minst,mp[maxv][maxv];
int n,tot,mxp;
vector<int>g[maxv];
bool vis[maxv];
double dis(int i,int j){
double temp = (px[i]-px[j])*(px[i]-px[j])+(py[i]-py[j])*(py[i]-py[j]);
return sqrt(temp);
}
void prim(){
int i,j,index;
double theMin;
for(i = ; i <= n; i++){
d[i] = mp[][i];
pre[i] = ;
}
for(i = ; i < n; i++){
theMin = INF;
for(j = ; j <= n; j++){
if(d[j] > && d[j] < theMin) theMin = d[index = j];
}
e[tot++] = (arc){pre[index],index,theMin};
g[index].push_back(pre[index]);
g[pre[index]].push_back(index);
Minst += theMin;
d[index] = -;
for(j = ; j <= n; j++)
if(d[j] > && d[j] > mp[index][j]){
d[j] = mp[index][j];
pre[j] = index;
}
}
}
void dfs(int u){
vis[u] = true;
if(val[u] > mxp) mxp = val[u];
for(int i = ; i < g[u].size(); i++){
if(!vis[g[u][i]]) dfs(g[u][i]);
}
}
int main(){
int t,i,j;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i = ; i <= n; i++){
scanf("%d%d%d",px+i,py+i,val+i);
g[i].clear();
}
for(i = ; i <= n; i++){
for(j = i+; j <= n; j++)
mp[i][j] = mp[j][i] = dis(i,j);
}
Minst = ;
tot = ;
prim();
double ans = ,temp;
for(i = ; i < tot; i++){
int u = e[i].u;
int v = e[i].v;
memset(vis,false,sizeof(vis));
temp = ;
mxp = ;
vis[v] = true;
dfs(u);
temp += mxp;
memset(vis,false,sizeof(vis));
vis[u] = true;
mxp = ;
dfs(v);
temp += mxp;
ans = max(ans,temp/(Minst-e[i].w));
}
printf("%.2f\n",ans);
}
return ;
}

图论trainning-part-1 H. Qin Shi Huang's National Road System的更多相关文章

  1. [hdu P4081] Qin Shi Huang’s National Road System

    [hdu P4081] Qin Shi Huang’s National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...

  2. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)

    题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. UValive 5713 Qin Shi Huang's National Road System

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  7. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  8. Qin Shi Huang's National Road System HDU - 4081(树形dp+最小生成树)

    Qin Shi Huang's National Road System HDU - 4081 感觉这道题和hdu4756很像... 求最小生成树里面删去一边E1 再加一边E2 求该边两顶点权值和除以 ...

  9. HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏

    Qin Shi Huang's National Road System                                                                 ...

随机推荐

  1. [转]AngularJS:何时应该使用Directive、Controller、Service?

    AngularJS是一款非常强大的前端MVC框架.同时,它也引入了相当多的概念,这些概念我们可能不是太熟悉.(译者注:老外真谦虚,我大天朝的码农对这些概念那是相当熟悉啊!)这些概念有: Directi ...

  2. vagrant教程

    http://blog.smdcn.net/article/1308.html http://ninghao.net/blog/1566 如何定制一个自己的 vagrant box: https:// ...

  3. 实训随笔:EL表达式JSON应用

    由于之前在学校写的jsp页面都是夹杂着java代码的,所以之前写了个jsp,满满的<%%>和java代码,老师说那样太不美观了啊!!!要全部用EL表达式替代了.本人还是太笨了,弄了一上午才 ...

  4. nmon安装和使用介绍

    使用参考地址:百度中搜索 nmon 博客园 使用文档参考地址:http://nmon.sourceforge.net/pmwiki.php?n=Site.Documentation nmmon地址:h ...

  5. Android学习总结(六)———— 发送自定义广播

    一.两种广播类型 2.1 标准广播 是一种完全异步执行的广播,在广播发出去之后,所有的广播接收器几乎都会在同一时刻接收到这条广播消息,因此它们之间没有任何先后顺序可言.这种广播的效率会比较高,但同时也 ...

  6. C++实现动态数组

    实现一个动态数组,要求对于随机访问可以在常数时间完成,可以通过push_back向数据的尾部追加元素,可以通过pop_back删除尾部元素,能够满足常见的数组操作. LINE 2016年春招笔试   ...

  7. python 判断路径是否存在

    import os os.path.exists(文件绝对路径)

  8. Python字符编码及字符串

    字符编码 字符串是一种数据类型,但是字符串比较特殊的是编码问题,计算机只能处理数字,处理文本就需要将文本转换成数字. 计算机设计时8bit作为一个字节byte,一个字节能表示的最大整数就是(2^8)- ...

  9. Python list 列表和tuple元组

    1 list是一种Python的数据类型--列表 list是一种有序的集合,可以进行增删改查 >>>name=[aa,bb,cc] >>>name ['aa','b ...

  10. syslog(),closelog()与openlog()--日志操作函数 (2)

    文章出处:http://blog.chinaunix.net/uid-26583794-id-3166083.html 守护进程日志的实现 syslogd守护进程用于解决守护进程的日志记录问题,而日志 ...