图论trainning-part-1 H. Qin Shi Huang's National Road System
H. Qin Shi Huang's National Road System
64-bit integer IO format: %I64d Java class name: Main

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
Input
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
Output
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
Sample Output
65.00
70.00 解题:此题跟次小生成树没多大关系,只是涉及到最小生成树的遍历问题。解题思路就是先求出最小生成树,存储这棵树,然后再在这棵树上进行去边操作,此时的两颗树上人口数最多的两个城市人口数的和 去除以 最小生成树的值减去此边的值 后的商,求这个商最大可能是多少。 Kruskal写法
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#define LL long long
#define INF 0x3f3f3f
using namespace std;
const int maxv = ;
const int maxe = *;
struct arc{
int u,v;
double w;
};
int uf[maxv];
vector<int>g[maxv];
arc e[maxe],tree[maxe];
int n,px[maxv],py[maxv],val[maxv];
int maxVal,es,ads;
double Minst;
bool vis[maxv];
bool cmp(const arc &x,const arc &y){
return x.w < y.w;
}
void dfs(int u){
vis[u] = true;
if(val[u] > maxVal) maxVal = val[u];
for(int i = ; i < g[u].size(); i++){
if(!vis[g[u][i]]) dfs(g[u][i]);
}
}
int findF(int x){
if(x != uf[x])
uf[x] = findF(uf[x]);
return uf[x];
}
double dis(int i,int j){
double temp = (px[i]-px[j])*(px[i]-px[j])+(py[i]-py[j])*(py[i]-py[j]);
return sqrt(temp);
}
void kruskal(){
for(int i = ; i < es; i++){
int x = findF(e[i].u);
int y = findF(e[i].v);
if(x != y){
Minst += e[i].w;
uf[x] = y;
g[e[i].u].push_back(e[i].v);
g[e[i].v].push_back(e[i].u);
tree[ads++] = e[i];
}
}
}
int main(){
int t,i,j;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i = ; i <= n; i++){
scanf("%d%d%d",px+i,py+i,val+i);
g[i].clear();
uf[i] = i;
}
ads = es = ;
Minst = ;
for(i = ; i <= n; i++)
for(j = i+; j <= n; j++){
e[es++] = (arc){i,j,dis(i,j)};
}
sort(e,e+es,cmp);
kruskal();
double ans = ,temp;
for(i = ; i < ads; i++){
int u = tree[i].u;
int v = tree[i].v;
memset(vis,false,sizeof(vis));
vis[v] = true;
temp = maxVal = ;
dfs(u);
temp += maxVal;
memset(vis,false,sizeof(vis));
maxVal = ;
vis[u] = true;
dfs(v);
temp += maxVal;
ans = max(ans,temp/(Minst-tree[i].w));
}
printf("%.2f\n",ans);
}
return ;
}
Prim写法:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxv = ;
const int maxe = *;
struct arc{
int u,v;
double w;
}e[maxe];
int px[maxv],py[maxv],val[maxv],pre[maxv];
double d[maxv],Minst,mp[maxv][maxv];
int n,tot,mxp;
vector<int>g[maxv];
bool vis[maxv];
double dis(int i,int j){
double temp = (px[i]-px[j])*(px[i]-px[j])+(py[i]-py[j])*(py[i]-py[j]);
return sqrt(temp);
}
void prim(){
int i,j,index;
double theMin;
for(i = ; i <= n; i++){
d[i] = mp[][i];
pre[i] = ;
}
for(i = ; i < n; i++){
theMin = INF;
for(j = ; j <= n; j++){
if(d[j] > && d[j] < theMin) theMin = d[index = j];
}
e[tot++] = (arc){pre[index],index,theMin};
g[index].push_back(pre[index]);
g[pre[index]].push_back(index);
Minst += theMin;
d[index] = -;
for(j = ; j <= n; j++)
if(d[j] > && d[j] > mp[index][j]){
d[j] = mp[index][j];
pre[j] = index;
}
}
}
void dfs(int u){
vis[u] = true;
if(val[u] > mxp) mxp = val[u];
for(int i = ; i < g[u].size(); i++){
if(!vis[g[u][i]]) dfs(g[u][i]);
}
}
int main(){
int t,i,j;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(i = ; i <= n; i++){
scanf("%d%d%d",px+i,py+i,val+i);
g[i].clear();
}
for(i = ; i <= n; i++){
for(j = i+; j <= n; j++)
mp[i][j] = mp[j][i] = dis(i,j);
}
Minst = ;
tot = ;
prim();
double ans = ,temp;
for(i = ; i < tot; i++){
int u = e[i].u;
int v = e[i].v;
memset(vis,false,sizeof(vis));
temp = ;
mxp = ;
vis[v] = true;
dfs(u);
temp += mxp;
memset(vis,false,sizeof(vis));
vis[u] = true;
mxp = ;
dfs(v);
temp += mxp;
ans = max(ans,temp/(Minst-e[i].w));
}
printf("%.2f\n",ans);
}
return ;
}
图论trainning-part-1 H. Qin Shi Huang's National Road System的更多相关文章
- [hdu P4081] Qin Shi Huang’s National Road System
[hdu P4081] Qin Shi Huang’s National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)
题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- UValive 5713 Qin Shi Huang's National Road System
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- Qin Shi Huang's National Road System HDU - 4081(树形dp+最小生成树)
Qin Shi Huang's National Road System HDU - 4081 感觉这道题和hdu4756很像... 求最小生成树里面删去一边E1 再加一边E2 求该边两顶点权值和除以 ...
- HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏
Qin Shi Huang's National Road System ...
随机推荐
- Y2165终极分班考试题。
第一题答案:D 2.下面关于SQLServer中视图的说法错误的是:C 答案:视图是数据中存储的数据值得集合. 3.在JAVA中,关于日志记录工具log4j的描述错误的是:D 答案:log4j个输出级 ...
- Java编程基础-反射
一.java反射 1.反射:动态获取类的信息,以及动态调用对象的方法的功能.可以理解为动态看透类的能力. 2.主要功能:在运行时判断任意一个对象所属的类:在运行时构造任意一个类的对象:在运行时判断任意 ...
- WebService学习之旅(七)Axis2发布WebService的几种方式
前面几篇文章中简单的介绍了如何使用Axis2发布WebService及如何使用Axis2实现Web服务的客户端调用,本节將详细介绍Axis2发布WebService的几种方式. 一.使用aar包方式发 ...
- FPGA的嵌入式RAM
FPGA中的嵌入式RAM分为两种:专用的BRAM和分布是RAM(用LUT实现的).这两种RAM又可以配置成单端口和双端口的RAM和ROM.双端口RAM又可以根据读写地址是否在同一块分为Double P ...
- 分布式系统中的CAP原理和BASE理论
CAP是一致性(Consistency).可用性(Availability).分区容忍性(Partition tolerance)的缩写.CAP原理指的是这三个要素最多只能同时实现两点,不可能三者兼顾 ...
- java httpclient 跳过证书验证
import java.io.IOException;import java.net.InetAddress;import java.net.Socket;import java.net.Unknow ...
- @AutoWired注解使用时可能会发生的错误
@Autowired注解:用于对Bean的属性变量.属性的set方法及构造函数进行标注,配合对应的注解处理器完成Bean的自动配置工作.@Autowired注解默认按照Bean类型进行装配. 1.在 ...
- SAP C/4HANA到底包含哪些产品?
2018年6月的SAPPHIRE(蓝宝石大会)上, SAP发布了新的商务软件套件:C/4HANA,意在通过SAP C/4HANA将前台应用和SAP Digital Core(数字化核心)S/4HANA ...
- Codeforces Round #318 (Div. 2) B Bear and Three Musketeers (暴力)
算一下复杂度.发现可以直接暴.对于u枚举a和b,判断一下是否连边,更新答案. #include<bits/stdc++.h> using namespace std; int n,m; ; ...
- Spring Boot配置文件大全
Spring Boot配置文件大全 ############################################################# # mvc ############## ...