Lecture 3
surface models
1. The two main methods of creating surface models are interpolation and triangulation
interpolation: we use it to help developing 3D surfaces, which is a digital representation of features, either real or hypothetical(假定的), in three-dimensional space.
Otherwise, extrapolation is to predict the value of an attribute at sites outside the area covered by existing observations
2. people need 3D surfaces to do surface analysis, which implies the analysis of continuous spatial variation. The most common application of surface analysis is digital elevation modelling (DEM).
3. A 3D surface is usually derived or calculated from continuous or noncontinuous surfaces (point, line, polygons) and converted it into a digital 3D surface
4. ArcGIS can create and store four types of surface models: raster, triangulated irregular network (TIN), terrain datasets, and LAS datasets.
TIN
1. TINs 保存输入数据的所有精度(preserve all the precision), 对已知点的值进行建模
2. TINs是一种基于矢量(vector-based)的数字地理数据形式(digital geographic data),将通过对一组顶点(vertices)进行三角测量(triangulating)来构建。顶点与一系列边相连,形成三角形网络
3. A TIN expects units to be in meters, not decimal degrees.
4. Method of interpolation to form these triangles: Delaunay triangulation or distance ordering.
5. raster surface models在工作效率、使用范围以及价位上都优于TINs,TINs主要用于较小区域内的高精度建模
Raster
1. Interpolation根据有限数量的采样数据点预测cells in a raster的值,可用于预测任何地点的未知数据,如海拔、降雨量、化学浓度和噪音水平等
Interpolation
1. everything is connected, but that near things are more related than those far apart
2.Need to define or quantify that relationship to interpolate
3.Works under the principle of the continuous field data model
4. Need a high density of data for it to be reliable( 需要高密度数据以确保可靠性 )
5. Need to use an interpolator that can represent the process you are modelling
Interpolation methods
1. Global interpolators( Prediction for the whole area of interest ): Trend surface analysis+Regression( 回归 )
2. Local interpolators( Operate within a small zone around the point being interpolated ):Nearest neighbours: Tiessen polygons,Delaunay triangulation( 三角测量 )+IDW(Inverse Distance interpolation)+Splines
3. Geostatistical: Kriging
#IDW assumes that unknown value is influenced more by nearby than far away points, but we can control how rapid that decayis, however there is no method of testing for the quality of predictions
Lecture 3的更多相关文章
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- note of introduction of Algorithms(Lecture 3 - Part1)
Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...
- codeforces 499B.Lecture 解题报告
题目链接:http://codeforces.com/problemset/problem/499/B 题目意思:给出两种语言下 m 个单词表(word1, word2)的一一对应,以及 profes ...
- Nobel Lecture, December 12, 1929 Thermionic phenomena and the laws which govern them
http://www.nobelprize.org/nobel_prizes/physics/laureates/1928/richardson-lecture.pdf OWEN W. RICHARD ...
- Jordan Lecture Note-1: Introduction
Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...
- Jordan Lecture Note-3: 梯度投影法
Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\n ...
- Jordan Lecture Note-2: Maximal Margin Classifier
Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...
- [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】
题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...
- Codeforces Round #287 D.The Maths Lecture
The Maths Lecture 题意:求存在后缀Si mod k =0,的n位数的数目.(n <=1000,k<=100); 用f[i][j]代表 长为i位,模k等于j的数的个数. 可 ...
- Lecture Halls
Lecture Halls (会议安排) 时间限制(普通/Java):1000MS/10000MS 运行内存限制:65536KByte 总提交: 38 测试通过: 2 ...
随机推荐
- QDU第一届程序设计大赛——E到I题解法(非官方题解)
题目链接https://qduoj.com/contest/28/problems,密码:qdu1230 E题: 思路:先进行排序,然后去暴力模拟就可以,但可能WA了几次,导致此题没解出来,有点可惜 ...
- 063 Unique Paths II 不同路径 II
这是“不同路径” 的进阶问题:现在考虑网格中有障碍物.那样将会有多少条不同的路径从左上角到右下角?网格中的障碍物和空位置分别用 1 和 0 来表示.例如,如下所示在 3x3 的网格中有一个障碍物.[ ...
- Java的常量接口思考,项目中的常量是放在接口里还是放在类里呢?
最近在看一本书 Java与模式,里面提了一句不建议使用常量接口,甚至举了个java源码的反例, 蛋疼的是没有说为什么? 查了网上一圈发现他们也是知道怎么做而不知道为什么这么做. 然后我只能找谷歌了,翻 ...
- 如何优化Mysql执行查询数据的速度
在项目中数据量小的情况下使用like查询速度还行,但是随着数据一天一天增加,再使用like进行模糊查询的时候速度上就会显得比较慢,现提供两套解决方案: 问题: 使用like查询效率很慢 select ...
- 通用的ashx调用
直接上代码 还是有一定通用性的 <%@ WebHandler Language="C#" Class="MyService" %> using Sy ...
- CoreDataDemo
// User.h // CoreDataDemo // // Created by gaokunpeng on 15/2/4. // Copyright (c) 2015年 qianfeng. Al ...
- python基础---有关nparray----切片和索引(一)
Numpy最重要的一个特点就是其N维数组对象,即ndarray,该对象是一种快速而灵活的大数据集容器,实际开发中,我们可以利用这种数组对整块数据执行一些数学运算. 有关ndarray,我们就从最简单的 ...
- C#调用C++接口返回字符串的做法
作者:朱金灿 来源:http://blog.csdn.net/clever101 现在有这样一种情景,假如C#调用C++接口需要返回一个字符串.因为字符串是不定长的,因此传递一个定长的字符串进去是不合 ...
- ubuntu 12.04 source.list 源更新
官方源: #deb cdrom:[Ubuntu 12.04 LTS _Precise Pangolin_ - Release i386 (20120423)]/ precise main restri ...
- 小白学phoneGap《构建跨平台APP:phoneGap移动应用实战》连载三(通过实例来体验生命周期)
4.1.2 通过实例来亲身体验Activity的生命周期 上一小节介绍了Activity生命周期中的各个过程,本小节将以一个简单的实例来使读者亲身体验到Activity生命周期中的各个事件. 在Ec ...