surface models

1. The two main methods of creating surface models are interpolation and triangulation

interpolation: we use it to help developing 3D surfaces, which is a digital representation of features, either real or hypothetical(假定的), in three-dimensional space.

Otherwise, extrapolation is to predict the value of an attribute at sites outside the area covered by existing observations

2. people need 3D surfaces to do surface analysis, which implies the analysis of continuous spatial variation. The most common application of surface analysis is digital elevation modelling (DEM).

3. A 3D surface is usually derived or calculated from continuous or  noncontinuous surfaces (point, line, polygons) and converted it into a digital 3D surface

4. ArcGIS can create and store four types of surface models: raster, triangulated irregular network (TIN), terrain datasets, and LAS datasets.

TIN

1. TINs 保存输入数据的所有精度(preserve all the precision), 对已知点的值进行建模

2. TINs是一种基于矢量(vector-based)的数字地理数据形式(digital geographic data),将通过对一组顶点(vertices)进行三角测量(triangulating)来构建。顶点与一系列边相连,形成三角形网络

3. A TIN expects units to be in meters, not decimal degrees.

4. Method of interpolation to form these triangles:  Delaunay triangulation or distance ordering.

5. raster surface models在工作效率、使用范围以及价位上都优于TINs,TINs主要用于较小区域内的高精度建模

Raster

1. Interpolation根据有限数量的采样数据点预测cells in a raster的值,可用于预测任何地点的未知数据,如海拔、降雨量、化学浓度和噪音水平等

Interpolation

1. everything is connected, but that near things are more related than those far apart

2.Need to define or quantify that relationship to interpolate

3.Works under the principle of the continuous field data model

4. Need a high density of data for it to be reliable( 需要高密度数据以确保可靠性 )

5. Need to use an interpolator that can represent the process you are modelling

Interpolation methods

1. Global interpolators( Prediction for the whole area of interest ): Trend surface analysis+Regression( 回归 )

2. Local interpolators( Operate within a small zone around the point being interpolated ):Nearest neighbours: Tiessen polygons,Delaunay triangulation( 三角测量 )+IDW(Inverse Distance interpolation)+Splines

3. Geostatistical: Kriging

#IDW assumes that unknown value is influenced more by nearby than far away points, but we can control how rapid that decayis, however there is no method of testing for the quality of predictions

Lecture 3的更多相关文章

  1. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  2. note of introduction of Algorithms(Lecture 3 - Part1)

    Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...

  3. codeforces 499B.Lecture 解题报告

    题目链接:http://codeforces.com/problemset/problem/499/B 题目意思:给出两种语言下 m 个单词表(word1, word2)的一一对应,以及 profes ...

  4. Nobel Lecture, December 12, 1929 Thermionic phenomena and the laws which govern them

    http://www.nobelprize.org/nobel_prizes/physics/laureates/1928/richardson-lecture.pdf OWEN W. RICHARD ...

  5. Jordan Lecture Note-1: Introduction

    Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...

  6. Jordan Lecture Note-3: 梯度投影法

    Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\n ...

  7. Jordan Lecture Note-2: Maximal Margin Classifier

    Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...

  8. [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】

    题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...

  9. Codeforces Round #287 D.The Maths Lecture

    The Maths Lecture 题意:求存在后缀Si mod k =0,的n位数的数目.(n <=1000,k<=100); 用f[i][j]代表 长为i位,模k等于j的数的个数. 可 ...

  10. Lecture Halls

    Lecture Halls (会议安排)   时间限制(普通/Java):1000MS/10000MS     运行内存限制:65536KByte 总提交: 38            测试通过: 2 ...

随机推荐

  1. Mysql和oracle字段类型与java对象类型对应表收藏

    https://blog.csdn.net/michaelzhou224/article/details/16827029 Mysql Oracle Java BIGINT NUMBER(19,0) ...

  2. Netty(7-2)传List

    ObjectEchoServer protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline p = ...

  3. 1137 - Sin your life sin公式 + 枚举

    http://www.ifrog.cc/acm/problem/1137 和差化积公式, 变成2 * sin((x + y) / 2) * cos((x - y) / 2) + sin(n - (x ...

  4. where whereis locate find 的用法

    1.where :where ifconfig.用来搜索命令,显示命令是否存在以及路径在哪 2.whereis:whereis vim .用来搜索程序名,而且只搜索二进制文件(参数-b).man说明文 ...

  5. I/O操做总结(四))

    前面已经把java io的主要操作讲完了 这一节我们来说说关于java io的其他内容 Serializable序列化 实例1:对象的序列化 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

  6. php设计模式-单例

    单例模式是一种常用的软件设计模式.在它的核心结构中只包含一个被称为单例的特殊类.通过单例模式可以保证系统中一个类只有一个实例. <设计模式>对此的定义:保证一个类仅有一个实例,并提供一个访 ...

  7. 字符串在forEach方法里面可以使用include函数

    今天在写项目的时候,发现了一个问题,使用forEach函数,arr数组里面的字符串可以调用include方法,我查阅了很多地方,string里面没有这个方法. 但是在forEach函数里面确实可以这样 ...

  8. js屏蔽鼠标右键事件

    <script type="text/javascript">function stops(){ return false;}document.oncontextmen ...

  9. Android Framework中的Application Framework层介绍

    Android的四层架构相比大家都很清楚,老生常谈的说一下分别为:Linux2.6内核层,核心库层,应用框架层,应用层.我今天重点介绍一下应用框架层Framework,其实也是我自己的学习心得. Fr ...

  10. SIGGRAPH 2017:深度学习与计算机图形学的碰撞

    每年由美国计算机协会(Association of Computing Machinery,简称ACM)计算机图形专业组举办的年会SIGGRAPH,是全球最负盛名的图形学和交互技术盛会.今年已经是这场 ...