surface models

1. The two main methods of creating surface models are interpolation and triangulation

interpolation: we use it to help developing 3D surfaces, which is a digital representation of features, either real or hypothetical(假定的), in three-dimensional space.

Otherwise, extrapolation is to predict the value of an attribute at sites outside the area covered by existing observations

2. people need 3D surfaces to do surface analysis, which implies the analysis of continuous spatial variation. The most common application of surface analysis is digital elevation modelling (DEM).

3. A 3D surface is usually derived or calculated from continuous or  noncontinuous surfaces (point, line, polygons) and converted it into a digital 3D surface

4. ArcGIS can create and store four types of surface models: raster, triangulated irregular network (TIN), terrain datasets, and LAS datasets.

TIN

1. TINs 保存输入数据的所有精度(preserve all the precision), 对已知点的值进行建模

2. TINs是一种基于矢量(vector-based)的数字地理数据形式(digital geographic data),将通过对一组顶点(vertices)进行三角测量(triangulating)来构建。顶点与一系列边相连,形成三角形网络

3. A TIN expects units to be in meters, not decimal degrees.

4. Method of interpolation to form these triangles:  Delaunay triangulation or distance ordering.

5. raster surface models在工作效率、使用范围以及价位上都优于TINs,TINs主要用于较小区域内的高精度建模

Raster

1. Interpolation根据有限数量的采样数据点预测cells in a raster的值,可用于预测任何地点的未知数据,如海拔、降雨量、化学浓度和噪音水平等

Interpolation

1. everything is connected, but that near things are more related than those far apart

2.Need to define or quantify that relationship to interpolate

3.Works under the principle of the continuous field data model

4. Need a high density of data for it to be reliable( 需要高密度数据以确保可靠性 )

5. Need to use an interpolator that can represent the process you are modelling

Interpolation methods

1. Global interpolators( Prediction for the whole area of interest ): Trend surface analysis+Regression( 回归 )

2. Local interpolators( Operate within a small zone around the point being interpolated ):Nearest neighbours: Tiessen polygons,Delaunay triangulation( 三角测量 )+IDW(Inverse Distance interpolation)+Splines

3. Geostatistical: Kriging

#IDW assumes that unknown value is influenced more by nearby than far away points, but we can control how rapid that decayis, however there is no method of testing for the quality of predictions

Lecture 3的更多相关文章

  1. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  2. note of introduction of Algorithms(Lecture 3 - Part1)

    Lecture 3(part 1) Divide and conquer 1. the general paradim of algrithm as bellow: 1. divide the pro ...

  3. codeforces 499B.Lecture 解题报告

    题目链接:http://codeforces.com/problemset/problem/499/B 题目意思:给出两种语言下 m 个单词表(word1, word2)的一一对应,以及 profes ...

  4. Nobel Lecture, December 12, 1929 Thermionic phenomena and the laws which govern them

    http://www.nobelprize.org/nobel_prizes/physics/laureates/1928/richardson-lecture.pdf OWEN W. RICHARD ...

  5. Jordan Lecture Note-1: Introduction

    Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都 ...

  6. Jordan Lecture Note-3: 梯度投影法

    Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\n ...

  7. Jordan Lecture Note-2: Maximal Margin Classifier

    Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SV ...

  8. [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】

    题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...

  9. Codeforces Round #287 D.The Maths Lecture

    The Maths Lecture 题意:求存在后缀Si mod k =0,的n位数的数目.(n <=1000,k<=100); 用f[i][j]代表 长为i位,模k等于j的数的个数. 可 ...

  10. Lecture Halls

    Lecture Halls (会议安排)   时间限制(普通/Java):1000MS/10000MS     运行内存限制:65536KByte 总提交: 38            测试通过: 2 ...

随机推荐

  1. Codeforces Round 56-C. Mishka and the Last Exam(思维+贪心)

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  2. 51nod1244 欧拉函数之和 杜教筛

    和上一题差不多,一个是μ*I=e,一个是φ*I=Id 稍改就得到了这题的代码 (我会告诉你我一开始逆元算错了吗) #include <bits/stdc++.h> #define MAX ...

  3. PIX 防火墙

    ---恢复内容开始--- 一 , PIX 防火墙的认识 PIX 是cisco 的硬件防火墙 硬件防火墙的工作速度快,使用方便. PIX 有很多型号,并发连接数是PIX防火墙的重要参数   PIX 25 ...

  4. LWIP应用指南学习。

    一 TCP接口函数:tcp_init() 必须在调用其它TCP函数之前调用,必须用一个硬件定时器来配置每TCP_FAST_INTERVAL (ms)调用一次tcp_fasttmr() :每TCP_SL ...

  5. Spark Mllib里如何将数据取消暂存在内存中(图文详解)

    不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第18章 决策树回归分类Bike Sharing数据集

  6. xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">报错

    https://blog.csdn.net/qq_36611526/article/details/79067159 今天遇到个问题 文件内引入某个资源 pom.xml头部http://maven.a ...

  7. 渣渣菜鸡的 ElasticSearch 源码解析 —— 启动流程(下)

    关注我 转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/08/12/es-code03/ 前提 上篇文章写完了 ES 流程启动的一部分,main 方法都入 ...

  8. mongodb关联查询 和spring data mongodb

    GITHUB:https://github.com/peterowang/Springdata-mongo 使用DBRefs DBRefs中有三个字段 - $ref - 此字段指定引用文档的集合 $i ...

  9. 关于原生javascript的this,this真是个强大的东东

    最近一直坐在东钿微信服务平台,上上级领导提出一个要求,就是微信分享. 因为首页是一个tab切换页,领导想在分享的时候区分上产调还是评估.我研究了很久很久,一直都是失败,今天领导又问了.于是我就向我们老 ...

  10. VC++堆栈大小设置

    VC++堆栈默认大小是1M,如果你分配大于1M的堆,一般会出异常,这里你要把堆调大些,下面是VC++6.0与VC++2010的设置方法 VC++6.0: 工程==>设置==>“连接”界面, ...