UVa 11149 Power of Matrix 矩阵快速幂
题意:
给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\)。
分析:
这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\(E\)。
下面讨论\(k > 0\)的情况:
方法一
设答案为\(S_k(k > 0)\)
把矩阵增广一下
$\begin{bmatrix}
A & O \
E & E
\end{bmatrix}
\begin{bmatrix}
A^n\
S_{n-1}
\end{bmatrix}
\begin{bmatrix}
A^{n+1}\
S_n
\end{bmatrix}\(
\)E\(表示单位矩阵,\)O\(是全为零的矩阵。
\){\begin{bmatrix}
A & O \
E & E
\end{bmatrix}}^k
\begin{bmatrix}
A\
O
\end{bmatrix}
\begin{bmatrix}
A^{k+1}\
S_k
\end{bmatrix}$
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 40;
const int MOD = 10;
int mul(int a, int b) { return a * b % MOD; }
void add(int& a, int b) { a += b; if(a >= MOD) a -= MOD; }
int n, k, sz;
int a[maxn][maxn], b[maxn][maxn];
struct Matrix
{
int a[maxn * 2][maxn * 2];
Matrix() { memset(a, 0, sizeof(a)); }
Matrix operator * (const Matrix& t) const {
Matrix ans;
for(int i = 0; i < sz; i++)
for(int j = 0; j < sz; j++)
for(int k = 0; k < sz; k++)
add(ans.a[i][j], mul(a[i][k], t.a[k][j]));
return ans;
}
void output() {
for(int i = 0; i < sz; i++) {
for(int j = 0; j < sz - 1; j++)
printf("%d ", a[i][j]);
printf("%d\n", a[i][sz - 1]);
}
printf("\n");
}
};
Matrix pow_mod(Matrix a, int p) {
Matrix ans;
for(int i = 0; i < sz; i++) ans.a[i][i] = 1;
while(p) {
if(p & 1) ans = ans * a;
a = a * a;
p >>= 1;
}
return ans;
}
int main()
{
while(scanf("%d%d", &n, &k) == 2 && n) {
Matrix M;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
scanf("%d", &a[i][j]);
a[i][j] %= MOD;
M.a[i][j] = a[i][j];
}
if(!k) {
for(int i = 0; i < n; i++) {
for(int j = 0; j < n - 1; j++)
printf("%d ", i == j ? 1 : 0);
printf("%d\n", i == n - 1 ? 1 : 0);
}
printf("\n");
continue;
}
for(int i = n; i < n * 2; i++)
M.a[i][i] = M.a[i][i - n] = 1;
sz = n * 2;
M = pow_mod(M, k);
memset(b, 0, sizeof(b));
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) if(M.a[i + n][j])
for(int k = 0; k < n; k++)
add(b[i][k], mul(M.a[i + n][j], a[j][k]));
for(int i = 0; i < n; i++) {
for(int j = 0; j < n - 1; j++)
printf("%d ", b[i][j]);
printf("%d\n", b[i][n - 1]);
}
printf("\n");
}
return 0;
}
方法二
有如下递归式:
- \(S_k=(E+A^{\frac{k}{2}})S^{\frac{k}{2}}\),k是偶数
- \(S_k=(E+A^{\frac{k}{2}})S^{\frac{k}{2}}+A^k\),k是奇数
所以也可以直接递归求解。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 40;
const int MOD = 10;
int mul(int a, int b) { return a * b % MOD; }
void add(int& a, int b) { a += b; if(a >= MOD) a -= MOD; }
int n, k;
struct Matrix
{
int a[maxn][maxn];
Matrix() { memset(a, 0, sizeof(a)); }
void E() {
memset(a, 0, sizeof(a));
for(int i = 0; i < maxn; i++) a[i][i] = 1;
}
Matrix operator + (const Matrix& t) const {
Matrix ans;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
add(ans.a[i][j], a[i][j]);
add(ans.a[i][j], t.a[i][j]);
}
return ans;
}
Matrix operator * (const Matrix& t) const {
Matrix ans;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) if(a[i][j])
for(int k = 0; k < n; k++)
add(ans.a[i][k], mul(a[i][j], t.a[j][k]));
return ans;
}
void output() {
for(int i = 0; i < n; i++) {
for(int j = 0; j < n - 1; j++)
printf("%d ", a[i][j]);
printf("%d\n", a[i][n - 1]);
}
printf("\n");
}
};
Matrix pow_mod(Matrix a, int p) {
Matrix ans;
ans.E();
while(p) {
if(p & 1) ans = ans * a;
a = a * a;
p >>= 1;
}
return ans;
}
Matrix E;
Matrix sum(Matrix a, int p) {
if(p == 1) return a;
Matrix ans;
ans = (E + pow_mod(a, p / 2)) * sum(a, p / 2);
if(p & 1) ans = ans + pow_mod(a, p);
return ans;
}
int main()
{
E.E();
while(scanf("%d%d", &n, &k) == 2) {
if(n == 0 && k == 0) break;
Matrix a;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) {
scanf("%d", &a.a[i][j]);
a.a[i][j] %= 10;
}
if(k == 0) {
E.output();
continue;
}
a = sum(a, k);
a.output();
}
return 0;
}
UVa 11149 Power of Matrix 矩阵快速幂的更多相关文章
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVA 11149 - Power of Matrix(矩阵乘法)
UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...
- UVA 11149.Power of Matrix-矩阵快速幂倍增
Power of Matrix UVA - 11149 代码: #include <cstdio> #include <cstring> #include < ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- POJ 3233 Matrix Power Series (矩阵快速幂)
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...
- 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)
题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...
- poj3233 Matrix Power Series(矩阵快速幂)
题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵 将 S 取幂,会发现一个特性: Sk +1右上角 ...
- fzu 1911 Construct a Matrix(矩阵快速幂+规律)
题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...
随机推荐
- SPRING代理模式
1.静态代理 主题对象:Student public interface Student { public String add(); } 目标对象:RealStudent public class ...
- ASPECTJ 注解。。。
public interface ISomeService { public void doSome(); public String dade(); } public class SomeServi ...
- Jquery each跳出循环
Jquery each跳出循环break--return false--跳出所有循环continue--return true--跳出当前循环
- JAVA常量介绍
常量: 在程序执行过程中,其值不发生改变的量: 1.分类: 字面值常量和自定义常量: 1.字面值常量有以下几种: 字符串常量.小数常量.整数常量.字符常量.布尔常量(true.false).空 ...
- python基础---有关nparray----切片和索引(一)
Numpy最重要的一个特点就是其N维数组对象,即ndarray,该对象是一种快速而灵活的大数据集容器,实际开发中,我们可以利用这种数组对整块数据执行一些数学运算. 有关ndarray,我们就从最简单的 ...
- ServletContext--HttpServletResponse--web项目执行流程
一.ServletContext 接口(javax.servlet) 定义:public interface ServletContext 原理: Tomcat启动的时候,需要识别webapp ...
- Jquery 事件 DOM操作
常规事件: 把JS的事件 on去掉即可 例如:js document.getElementById("id").onclinck=function(){} Jquery ...
- 让您的Eclipse具有千变万化的外观
大家每天用Eclipse做Java开发,是否厌倦了Eclipse千篇一律的白色背景呢? 看看Jerry这几种不同风格的Eclipse外观,是不是有耳目一新的感觉?如何做到的? 需要给Eclipse安装 ...
- MovieReview—Transformers.The.Last.Knight.(变形金刚5:最后的骑士.)
Gorgeous Effect & Bad Plot I can only say that the movie's effects are shocking. However, the ...
- js实现23种设计模式(收藏)
js实现23种设计模式 最近在学习面向对象的23种设计模式,使用java 和 javascript 实现了一遍,但是因为目前大三,还没有比较正规的大项目经验,所以学习的过程种我觉得如果没有一定的项目经 ...