一个字符串如果能简写,要么是重复多次,按题中的要求简写;要么是左右两个部分分别简写后再拼起来。

dp(i, j)表示字串(i, j)所能被简写的最短的字符串。

判断一个字符串是否为周期串以及求出它的周期用的KMP算法。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std; const int maxn = + ; char s[maxn], t[maxn];
string d[maxn][maxn]; string ToString(int x)
{
string ans = "";
while(x)
{
ans += (char) ('' + (x % ));
x /= ;
}
reverse(ans.begin(), ans.end());
return ans;
} int f[maxn];
void getFail(char* s)
{
int len = strlen(s);
f[] = f[] = ;
for(int i = ; i < len; i++)
{
int j = f[i];
while(j && s[i] != s[j]) j = f[j];
f[i+] = s[i] == s[j] ? j+ : ;
}
} int main()
{
while(scanf("%s", s) == )
{
int len = strlen(s);
for(int i = ; i < len; i++) d[i][i] = string("") + s[i]; for(int l = ; l <= len; l++)
{
for(int i = ; i + l - < len; i++)
{
int j = i + l - ;
d[i][j] = "";
for(int k = i; k <= j; k++) { d[i][j] += s[k]; t[k-i] = s[k]; } t[j - i + ] = ;
getFail(t);
if(l % (l - f[l]) == )
{
int cycle = l - f[l];
string t = "";
t = ToString(l / cycle);
t += '(';
t += d[i][i + cycle - ];
t += ')'; if(t.length() < d[i][j].length()) d[i][j] = t;
} for(int k = i; k < j; k++)
{
if(d[i][k].length() + d[k+][j].length() < d[i][j].length())
d[i][j] = d[i][k] + d[k+][j];
}
}
} cout << d[][len - ] << endl;
} return ;
}

代码君

UVa 1630 区间DP Folding的更多相关文章

  1. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  2. UVA 1626 区间dp、打印路径

    uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...

  3. 紫书 例题 9-9 UVa 10003 (区间dp+递推顺序)

    区间dp,可以以一个区间为状态,f[i][j]是第i个切点到第j个切点的木棍的最小费用 那么对于当前这一个区间,枚举切点k, 可以得出f[i][j] = min{dp(i, k) + dp(k, j) ...

  4. UVA 10003 区间DP

    这个题目蛮有新意的,一度导致我没看透他是区间DP 给一个0-L长度的木板,然后给N个数,表示0-L之间的某个刻度,最后要用刀把每个刻度都切一下 使其断开,然后每次分裂的cost是分裂前的木板的长度.求 ...

  5. uva 10891 区间dp+记忆化搜索

    https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...

  6. UVA 10891 区间DP+博弈思想

    很明显带有博弈的味道.让A-B最大,由于双方都采用最佳策略,在博弈中有一个要求时,让一方的值尽量大.而且由于是序列,所以很容易想到状态dp[i][j],表示序列从i到j.结合博弈中的思想,表示初始状态 ...

  7. 紫书 例题 9-10 UVa 1626 (区间dp + 输出技巧)

    当前区间f(i, j)分两种情况,一种是s[i]于s[j]符合要求,那么可以转移到f[i + 1][j - 1] 这样答案只会更小或者相等 第二种是直接分成两个部分, 即f[i][j] = f[i][ ...

  8. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  9. 区间DP+next求循环节 uva 6876

    // 区间DP+next求循环节 uva 6876 // 题意:化简字符串 并表示出来 // 思路:dp[i][j]表示 i到j的最小长度 // 分成两部分 再求一个循环节 #include < ...

随机推荐

  1. 关于一次性的数据输入,excel字符串连接保存到服务器还是CRUD?

    一 开发中遇到个问题,线下一个紧急的活动,给一个excel的文件,要把里面的一次性的数据放进活动里面,说真的几百几千个数据啊,手写进数据库不是更麻烦了吗? 于是,备份方法就是写一个crud,让线下的人 ...

  2. Uncaught Error: Bootstrap's JavaScript requires jQuery

    在写bootstarp的时候,一直报 Uncaught Error: Bootstrap's JavaScript requires jQuery 查看了自己引入的文件路径是对的,也可以使用jquer ...

  3. DOM所有的命令(CMD)

    刚接触电脑的时候是从DOS系统开始,DOS时代根本就没有Windows这样的视窗操作界面,只有一个黑漆漆的窗口,让你输入命令.所以学DOS系统操作,cmd命令提示符是不可或缺的.可以告诉大家,大多数的 ...

  4. MVC的viewPage 通用属性运用。

    试想下在MVC的前端页面JS或者html中需要使用多语言,而后端的多语言是维护在资源文件中的,前端如果使用的话需要使用AJAX频繁的获取,一个页面中可能会存在大量的需要语言转换的地方,频繁使用AJAX ...

  5. babel7中 corejs 和 corejs2 的区别

    babel7中 corejs 和 corejs2 的区别 最近在给项目升级 webpack4 和 babel7,有一些改变但是变化不大.具体过程可以参考这篇文章 webpack4:连奏中的进化.只是文 ...

  6. Mind must be master of the body, strong mind can separate the body from its suffering.

    Mind must be master of the body, strong mind can separate the body from its suffering.意志是身体的主人,有顽强的意 ...

  7. 访问权限修饰符-static-final-this-super-匿名对象

    1.this关键字的作用     1)调用本类中的属性;     2)调用本类中的构造方法;且只能放首行,且必须留一个构造方法作为出口,即不能递归调用     3)表示当前对象; 2.匿名对象     ...

  8. 如何快速构建CMBD系统-glpi

    一.CMBD系统构建步骤 起初,开发这套CMBD系统是为了帮助朋友公司简化设备统计操作,以代替人工入库方式.举个例子,单位发放笔记本,或者设备更换了硬盘,都需要人工签到,手动输入统计,安装了CMBD系 ...

  9. HDU 5489 Removed Interval (LIS,变形)

    题意: 给出一个n个元素的序列,要求从中删除任一段长度为L的连续子序列,问删除后的LIS是多少?(n<=10w, L<=n ,元素可能为负) 思路: 如果会O(nlogn)求普通LIS的算 ...

  10. Predicate和Consumer接口的使用

    //  Predicate   判断是否拥有资格,Consumer  改变输入的值 案例 public static MyTest2 getV(MyTest2 a, Predicate<MyTe ...