BST
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8657   Accepted: 5277

Description

Consider an infinite full binary search tree (see the figure below), the numbers in the nodes are 1, 2, 3, .... In a subtree whose root node is X, we can get the minimum number in this subtree by repeating going down the left node until the last level, and we can also find the maximum number by going down the right node. Now you are given some queries as "What are the minimum and maximum numbers in the subtree whose root node is X?" Please try to find answers for there queries.

Input

In the input, the first line contains an integer N, which represents the number of queries. In the next N lines, each contains a number representing a subtree with root number X (1 <= X <= 231 - 1).

Output

There are N lines in total, the i-th of which contains the answer for the i-th query.

Sample Input

2
8
10

Sample Output

1 15
9 11 算法分析:
此题目的意思是,按照原则建成的二叉树,每次我输入一个根节点的值,从当前根节点一直往左跑,跑到左边最底层,此时的该点,一定是以输入值为根节点的二叉树的
最小值,同理往右边跑,一直跑到底,则是最大值。此题目符合树状数组的结构特点。
#include <iostream>
#include <stdio.h>
#include <string>
#include <string.h>
#include <iomanip>
#include <algorithm> using namespace std; int main()
{
int t;
int n;int m, dd; scanf("%d", &t);
while(t--)
{
scanf("%d", &m);
dd= m&(-m) ;
dd--;
//printf("%d\n", dd);
printf("%d %d\n", m-dd, m+dd );
}
return 0;
}

POJ 2309 BST(二叉搜索树)的更多相关文章

  1. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  2. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  3. bst 二叉搜索树简单实现

    //数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...

  4. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  5. [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    Given a binary search tree with non-negative values, find the minimum absolute difference between va ...

  6. 浅析BST二叉搜索树

    2020-3-25 update: 原洛谷日报#2中代码部分出现一些问题,详情见此帖.并略微修改本文一些描述,使得语言更加自然. 2020-4-9 update:修了一些代码的锅,并且将文章同步发表于 ...

  7. 530 Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    给定一个所有节点为非负值的二叉搜索树,求树中任意两节点的差的绝对值的最小值.示例 :输入:   1    \     3    /   2输出:1解释:最小绝对差为1,其中 2 和 1 的差的绝对值为 ...

  8. LeetCode #938. Range Sum of BST 二叉搜索树的范围和

    https://leetcode-cn.com/problems/range-sum-of-bst/ 二叉树中序遍历 二叉搜索树性质:一个节点大于所有其左子树的节点,小于其所有右子树的节点 /** * ...

  9. Leetcode938. Range Sum of BST二叉搜索树的范围和

    给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和. 二叉搜索树保证具有唯一的值. 示例 1: 输入:root = [10,5,15,3,7,null,18], L = 7 ...

随机推荐

  1. 平衡树与可持久化treap

    平衡树(二叉树) 线段树不支持插入or删除一个数于是平衡树产生了 常见平衡树:treap(比sbt慢,好写吧),SBT(快,比较好写,有些功能不支持),splay(特别慢,复杂度当做根号n来用,功能强 ...

  2. datetimepicker使用总结

    datetimepicker使用总结 2019-03-06    16:55:00 使用效果: 官方教程:http://www.bootcss.com/p/bootstrap-datetimepick ...

  3. Maven设置代理

    很多时候电信的网络对于出国不太稳定,针对一些库下载速度比较慢,所以在使用SSR出国时配置maven使用是一种不错的选择.当然,还有另一种选择,就是使用国内的镜像库. 操作步骤: 1.打开{M2_HOM ...

  4. JavaScript的变量:变量提升

    JavaScript代码的运行规则 在JavaScript代码运行之前其实是有一个编译阶段的.编译之后才是从上到下,一行一行解释执行.这样一来也给初学者造成很大的误解.初学者会觉得JavaScript ...

  5. spring aop提供了两种实现方式jdk和cglib

    Spring AOP使用了两种代理机制:一种是基于JDK的动态代理:另一种是基于CGLib的动态代理.之所以需要两种代理机制,很大程度上是因为JDK本身只提供接口的代理,而不支持类的代理. Sprin ...

  6. bubble chat listview

    最近在iOS中用到bubble chat listview,找了个比较有名气的lib(MessagesTableViewController)=>https://github.com/jesse ...

  7. ZooKeeper 授权验证

    ZooKeeper 授权验证 学习了:https://blog.csdn.net/liuyuehu/article/details/52121755 zookeeper可以进行认证授权:

  8. 前言(CSDN也有Markdown了,好开森)

    实战出精华 在具体的C++网络编程中提升你的逼格 John Torjo Boost.Asio C++ 网络编程 Copyright © 2013 Packt Publishing 关于作者 做为一名权 ...

  9. who命令

    who1.c #include <stdio.h>#include <utmp.h>#include <fcntl.h>#include <unistd.h& ...

  10. Ffmpeg 实现文件切割

    文件切割是一项很常见的基本功能,通过Ffmpeg可以很容易实现这项功能. 首先介绍下基本原理,文件切割说白了就过滤掉文件的部分音视频包,按照什么规则过滤呢? 答案是时间戳.文件中每个视频及音频包都有时 ...