题目链接

  题没想出来很烦+一堆细节要注意很烦。

  当然更可能是我智商被osu吃了。

  考虑一条边会有什么贡献?它一边的黑点数*另一边的黑点数*边权。

  +它一边的白点数*另一边的白点数*边权。

  这样一来就成了一个树形背包

  

#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#define maxn 2030
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
long long next,to,dis;
}edge[maxn*];
long long head[maxn],num;
inline void add(long long from,long long to,long long dis){
edge[++num]=(Edge){head[from],to,dis};
head[from]=num;
} long long n,m;
long long size[maxn];
long long f[maxn][maxn]; void build(long long x,long long fa){
size[x]=;
for(long long i=head[x];i;i=edge[i].next){
long long to=edge[i].to;
if(to==fa) continue;
build(to,x);
size[x]+=size[to];
}
} inline long long calc(long long i,long long x){
return (m-x)*x*edge[i].dis+(n-m+x-size[edge[i].to])*(size[edge[i].to]-x)*edge[i].dis;
} void dfs(long long x,long long fa){
memset(f[x],-,sizeof(f[x])); f[x][]=f[x][]=;
for(long long i=head[x];i;i=edge[i].next){
long long to=edge[i].to;
if(to==fa) continue;
dfs(to,x);
for(long long j=min(m,size[x]);j>=;--j){
for(long long k=;k<=min(j,size[to]);++k)
if(f[x][j-k]!=-) f[x][j]=max(f[x][j],f[x][j-k]+f[to][k]+calc(i,k));
}
}
return;
} int main(){
n=read(),m=read();
for(long long i=;i<n;++i){
long long from=read(),to=read(),dis=read();
add(from,to,dis);
add(to,from,dis);
}
build(,);
dfs(,);
printf("%lld\n",f[][m]);
return ;
}

【Luogu】P3177树上染色(树形DP)的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  3. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  4. 【HAOI2015】树上染色—树形dp

    [HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...

  5. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

  6. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  7. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  8. 【HAOI2015】树上染色 - 树形 DP

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  9. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  10. 2021.07.17 P3177 树上染色(树形DP)

    2021.07.17 P3177 树上染色(树形DP) [P3177 HAOI2015]树上染色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.dp思想是需要什么,维护 ...

随机推荐

  1. Codevs 1860 最大数

    题目描述 Description 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 输入描述 Input Description 第一行一个正整数n. 第二行n个正整数,空格隔开 ...

  2. Linux中根据访问日志统计访问量最高的前N个IP

    前段时间面试中被问到如上问题,日常不怎么注意积累,以此谨记. 访问IP 页面[nxuser@im440-zh test]$ vi log 135.252.172.181 page1 136.252.1 ...

  3. 【UML】类图Class diagram(转)

    http://blog.csdn.net/sds15732622190/article/details/48860711 前言 说到UML,相信大家就能立刻反应出其中的类图,为什么这么说呢,类图和用例 ...

  4. 监控服务端口状态python脚本

    #!/usr/bin/python import socket,os,time data={ 8080:"tomcat9", 18080:"tomcat_hjgdmj&q ...

  5. 【单调队列】P1886 滑动窗口

    GET 单调队列 题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: Th ...

  6. 【MySql】Mysql ERROR 1067: Invalid default value for ‘date’ 解决

    在给一个表添加字段的时候,忽然发现会报一个date类型的字段的默认值错误,郁闷~ 经过排查,原来是MySQL的配置问题,在wamp下,MySQL 5.7里是没有设置 SQL_MODE 的. 1.my. ...

  7. Linux基础学习-使用vsftpd服务传输文件

    使用vsftpd服务传输文件 1 安装vsftpd [root@qdlinux ~]# yum install vsftpd Loaded plugins: product-id, search-di ...

  8. PHP redis使用命令

    很有用;以下是redis官方提供的命令使用技巧: 下载地址如下: https://github.com/owlient/phpredis(支持redis 2.0.4) Redis::__constru ...

  9. java上传附件,批量下载附件(一)

    上传附件代码:借助commons-fileupload-1.2.jar package com.str; import java.io.BufferedInputStream;import java. ...

  10. 《零基础入门学习Python》【第一版】视频课后答案第001讲

    测试题答案: 0. Python 是什么类型的语言? Python是脚本语言 脚本语言(Scripting language)是电脑编程语言,因此也能让开发者藉以编写出让电脑听命行事的程序.以简单的方 ...