题意:n个青蛙在一个有m个节点的圆上跳,m个节点的标号为0-m-1,每只青蛙每次跳的节点数给出,让求n只青蛙所跳位置标号之和

n<=1e4,m<=1e9,a[i]<=1e9

思路:由裴蜀定理可知该问题等价于[0,m-1]能被至少一个gcd(m,a[i])整除的数字之和

因为n过大,考虑与m的因子个数相关的算法,因子个数<=200

做因子之间的容斥,每一个因子a[i]的贡献t=贡献次数*a[i]*(m/a[i]-1)*(m/a[i])/2

后面部分是一个等差数列

算完每一个因子的贡献之后再维护其倍数因子的贡献

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
#define N 40000
#define M 32
#define oo 10000000
#define MOD 105225319 int a[N],vis[N]; int gcd(int x,int y)
{
if(!y) return x;
return gcd(y,x%y);
} int main()
{
int cas;
scanf("%d",&cas);
for(int v=;v<=cas;v++)
{
int n,m;
scanf("%d%d",&n,&m);
memset(vis,,sizeof(vis));
int tot=;
for(int i=;i*i<=m;i++)
if(m%i==)
{
a[++tot]=i;
if(i*i!=m) a[++tot]=m/i;
}
sort(a+,a+tot+);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
int t=gcd(m,x);
for(int j=;j<=tot;j++)
if(a[j]%t==) vis[j]=;
}
ll ans=;
for(int i=;i<=tot;i++)
if(vis[i])
{
ll t=m/a[i];
ans+=(ll)a[i]*t*(t-)/*vis[i];
for(int j=i+;j<=tot;j++)
if(a[j]%a[i]==) vis[j]-=vis[i];
}
printf("Case #%d: %I64d\n",v,ans);
}
return ;
}

【HDOJ5514】Frogs(容斥原理)的更多相关文章

  1. HDU 5514 Frogs (容斥原理+因子分解)

    题目链接 题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 题解:暴力肯定会超时,首先分解出m的因子,自己本身不用分,因为石头编号是0 ...

  2. HDU 5514 Frogs (容斥原理)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...

  3. HDU 5514 Frogs(容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5514 [题目大意] m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子, ...

  4. Frogs

    Problem Description There are m stones lying on a circle, and n frogs are jumping over them.The ston ...

  5. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5514.Frogs-欧拉函数 or 容斥原理

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  7. HDU5514 Frogs

    /* HDU5514 Frogs http://acm.hdu.edu.cn/showproblem.php?pid=5514 容斥原理 * * */ #include <cstdio> ...

  8. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  9. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

随机推荐

  1. 济南NOIP冬令营 选拔(select)

    选拔(select) Time Limit:2000ms   Memory Limit:128MB 题目描述 LYK对n个女生有好感.第i个女生的身高为ai. LYK要在这些女生中选拔出一个女生来作为 ...

  2. TO_DATS() AS ABAP_DATE

    有的时候一个想不到的小问题,,才是致命的问题!

  3. 零基础快速掌握Python系统管理视频课程【猎豹网校】

    点击了解更多Python课程>>> 零基础快速掌握Python系统管理视频课程[猎豹网校] 课程目录 01.第01章 Python简介.mp4 02.第02章 IPython基础.m ...

  4. 五 python并发编程之IO模型

    一 IO模型介绍 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问 ...

  5. thinkphp 3.2.3 - App.class.php 解析

    class App { public static function init() { load_ext_file(COMMON_PATH); // { // /home/www/www.domain ...

  6. 笔记-python-build-in-types

    笔记-python-build-in-types 注:文档内容来源为Python 3.6.5 documentation 1.      built-in types 1.1.    真值测试 所有对 ...

  7. Windows下如何用CMD命令跳转到指定的目录下

    以Window7为例说明,想要跳转到I:\adt-bundle-windows-x86-20130219\sdk\platform-tools目录下. 1.在运行中打开CMD命令窗口如下图所示: 2. ...

  8. Java中Scanner中nextLine()方法和next()方法的区别

    https://blog.csdn.net/hello_word2/article/details/54895106

  9. 【 Sqrt(x) 】cpp

    题目: Implement int sqrt(int x). Compute and return the square root of x. 代码: class Solution { public: ...

  10. Hive jdbc连接出现java.sql.SQLException: enabling autocommit is not supported

    1.代码如下 String url = "jdbc:hive2://master135:10000/default"; String user = "root" ...