题意:n个青蛙在一个有m个节点的圆上跳,m个节点的标号为0-m-1,每只青蛙每次跳的节点数给出,让求n只青蛙所跳位置标号之和

n<=1e4,m<=1e9,a[i]<=1e9

思路:由裴蜀定理可知该问题等价于[0,m-1]能被至少一个gcd(m,a[i])整除的数字之和

因为n过大,考虑与m的因子个数相关的算法,因子个数<=200

做因子之间的容斥,每一个因子a[i]的贡献t=贡献次数*a[i]*(m/a[i]-1)*(m/a[i])/2

后面部分是一个等差数列

算完每一个因子的贡献之后再维护其倍数因子的贡献

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
#define N 40000
#define M 32
#define oo 10000000
#define MOD 105225319 int a[N],vis[N]; int gcd(int x,int y)
{
if(!y) return x;
return gcd(y,x%y);
} int main()
{
int cas;
scanf("%d",&cas);
for(int v=;v<=cas;v++)
{
int n,m;
scanf("%d%d",&n,&m);
memset(vis,,sizeof(vis));
int tot=;
for(int i=;i*i<=m;i++)
if(m%i==)
{
a[++tot]=i;
if(i*i!=m) a[++tot]=m/i;
}
sort(a+,a+tot+);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
int t=gcd(m,x);
for(int j=;j<=tot;j++)
if(a[j]%t==) vis[j]=;
}
ll ans=;
for(int i=;i<=tot;i++)
if(vis[i])
{
ll t=m/a[i];
ans+=(ll)a[i]*t*(t-)/*vis[i];
for(int j=i+;j<=tot;j++)
if(a[j]%a[i]==) vis[j]-=vis[i];
}
printf("Case #%d: %I64d\n",v,ans);
}
return ;
}

【HDOJ5514】Frogs(容斥原理)的更多相关文章

  1. HDU 5514 Frogs (容斥原理+因子分解)

    题目链接 题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 题解:暴力肯定会超时,首先分解出m的因子,自己本身不用分,因为石头编号是0 ...

  2. HDU 5514 Frogs (容斥原理)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...

  3. HDU 5514 Frogs(容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5514 [题目大意] m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子, ...

  4. Frogs

    Problem Description There are m stones lying on a circle, and n frogs are jumping over them.The ston ...

  5. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5514.Frogs-欧拉函数 or 容斥原理

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  7. HDU5514 Frogs

    /* HDU5514 Frogs http://acm.hdu.edu.cn/showproblem.php?pid=5514 容斥原理 * * */ #include <cstdio> ...

  8. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  9. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

随机推荐

  1. Sum All Odd Fibonacci Numbers-freecodecamp算法题目

    Sum All Odd Fibonacci Numbers 1.要求 给一个正整数num,返回小于或等于num的斐波纳契奇数之和. 斐波纳契数列中的前几个数字是 1.1.2.3.5 和 8,随后的每一 ...

  2. SummerVocation_Learning--java的String类方法总结

    壹: public char charAt(int index),返回字符串中第index个字符. public int length(), 返回字符串长度. public int indexOf(S ...

  3. 十六、MySQL LIKE 子句

    MySQL LIKE 子句 我们知道在 MySQL 中使用 SQL SELECT 命令来读取数据, 同时我们可以在 SELECT 语句中使用 WHERE 子句来获取指定的记录. WHERE 子句中可以 ...

  4. UC浏览器打开首页显示:显示此网页时出了点问题

    使用UC浏览器打开网页的时候显示出错,如下图所示.但是用其他浏览器都很正常 我自己用的解决方法:最近刚下载了驱动精灵,听同学的把驱动精灵卸载了就恢复正常了

  5. PHP 作用域

  6. HDU 6092 01背包变形

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  7. [USACO]奶牛博览会(DP)

    Description 奶牛想证明他们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N头奶牛进行了面试,确定了每头奶牛的智商和情商. 贝西有权选择让哪些奶牛参加展览.由于负的智商或情商会造成 ...

  8. 笔记-算法-KMP算法

    笔记-算法-KMP算法 1.      KMP算法 KMP算法是一种改进的字符串匹配算法,KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的.具体实现就是实现一 ...

  9. eclipse中设置JVM内存

    一.   修改jdk 使用内存: 找到eclispe 中window->preferences->Java->Installed JRE ,点击右侧的Edit 按钮,在编辑界面中的 ...

  10. js:随记

    typeof:没有大写,因为typeof是运算符 *1:是转数字 +string:是转数字,在Date对象上是getTime ""+:是转字符串 "":bool ...