交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异。

相对熵(relative entropy)就是KL散度(Kullback–Leibler divergence),用于衡量两个概率分布之间的差异。

对于两个概率分布 ,其相对熵的计算公式为:

注意:由于 在公式中的地位不是相等的,所以

相对熵的特点,是只有 时,其值为0。若 略有差异,其值就会大于0。

相对熵公式的前半部分 就是交叉熵(cross entropy)。

是数据的真实概率分布, 是由数据计算得到的概率分布。机器学习的目的就是希望尽可能地逼近甚至等于 ,从而使得相对熵接近最小值0。由于真实的概率分布是固定的,相对熵公式的后半部分 就成了一个常数。相对熵的值大于等于0(https://zhuanlan.zhihu.com/p/28249050,这里给了证明),那么相对熵达到最小值的时候,也意味着交叉熵达到了最小值。对 的优化就等效于求交叉熵的最小值。另外,对交叉熵求最小值,也等效于求最大似然估计(maximum likelihood estimation)。

注意:交叉熵是衡量分布p与分布q的相似性,以前认为交叉熵的相似性越大,交叉熵的值就应该越大。但通过上面的推到可以看出,交叉熵得到两个分布的相似性是根据相对熵来的,所以相似性越大,交叉熵的值应该越小。

交叉熵cross entropy和相对熵(kl散度)的更多相关文章

  1. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  2. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  3. 【机器学习基础】熵、KL散度、交叉熵

    熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...

  4. 信息论相关概念:熵 交叉熵 KL散度 JS散度

    目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...

  5. KL散度相关理解以及视频推荐

    以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...

  6. 熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)

    1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类 ...

  7. [转]熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)

    https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练 ...

  8. 熵、交叉熵、相对熵(KL 散度)意义及其关系

    熵:H(p)=−∑xp(x)logp(x) 交叉熵:H(p,q)=−∑xp(x)logq(x) 相对熵:KL(p∥q)=−∑xp(x)logq(x)p(x) 相对熵(relative entropy) ...

  9. [ch03-02] 交叉熵损失函数

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entrop ...

随机推荐

  1. C++开源库(一) ----libConfig详解

    博主天生患有蛋疼疾病,写博不易,转载注明出处http://www.cnblogs.com/liboBlog/,谢谢! 在写程序的时候必不可少的一个部分就是conf文件的解析,但是如果自己解析的话会比较 ...

  2. ABP 软删除ISoftDelete

    一.简介 ABP 的软删除是为了,在删除的时候,不是真正的删除数据,是为了保护数据. 二.具体实现 在 Core  层,我们需要这个实体去实现这个 ISoftDelete 接口.实现它的 public ...

  3. java数据结构和算法08(B树的简单原理)

    这一篇首先会说说前面剩余的一点知识2-3树,然后简单说说B树,不写代码,只是简单看看原理吧! 为什么要说一下2-3树呢?了解2-3树之后能更快的了解B树: 1.简单看看2-3树 其实我们学过了前面的2 ...

  4. (function (window, document, undefined) {})(window, document)什么意思?

    1.IIFE(即时调用的函数表达式),它采取以下表达式: (function (window, document, undefined) { // })(window, document); Java ...

  5. 每次移1px的无缝轮播图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. python2与python3 版本区别

    目录 编码 输入输出 中文 除法 长整形 内置函数map xrange init reduce 字符串类型 dict字典 经典类 新式类 未完待补充 编码 python2默认编码器为ascii码(只支 ...

  7. falsk-sqlalchemy 连接数据库出现 No module named 'MySQLdb'

    安装pymysql:pip install pymysql 按照 Flask-SQLAlchemy 文档的说明,配置好 SQLALCHEMY_DATABASE_URI = 'mysql://usern ...

  8. ORA-01950:表空间“USERS”中无权限

    ORA-01950:表空间“USERS”中无权限 解决方案: A)确认给用户授权了resource角色 B)取消限制 ALTER USER "HCCPMS" QUOTA UNLIM ...

  9. sed命令用法

    Sed 简介 sed 是一种新型的,非交互式的编辑器.它能执行与编辑器 vi 和 ex 相同的编辑任务.sed 编辑器没有提供交互式使用方式,使用者只能在命令行输入编辑命令.指定文件名,然后在屏幕上查 ...

  10. P2152 [SDOI2009]SuperGCD

    传送门 非常显du然liu的一道题 就是求GCD 因为数据范围... 所以要上压位高精+非递归的辗转相减 关于辗转相减: 如果 A是二的倍数,B是二的倍数   那么GCD(A,B)=2 * GCD(A ...