A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In this problem you are to write a program that will cut some number of prime numbers from the list of prime numbers between (and including) 1 and N. Your program will read in a number N; determine the list of prime numbers between 1 and N; and print the C*2 prime numbers from the center of the list if there are an even number of prime numbers or (C*2)-1 prime numbers from the center of the list if there are an odd number of prime numbers in the list.

Input

Each input set will be on a line by itself and will consist of 2 numbers. The first number (1 <= N <= 1000) is the maximum number in the complete list of prime numbers between 1 and N. The second number (1 <= C <= N) defines the C*2 prime numbers to be printed from the center of the list if the length of the list is even; or the (C*2)-1 numbers to be printed from the center of the list if the length of the list is odd.

Output

For each input set, you should print the number N beginning in column 1 followed by a space, then by the number C, then by a colon (:), and then by the center numbers from the list of prime numbers as defined above. If the size of the center list exceeds the limits of the list of prime numbers between 1 and N, the list of prime numbers between 1 and N (inclusive) should be printed. Each number from the center of the list should be preceded by exactly one blank. Each line of output should be followed by a blank line. Hence, your output should follow the exact format shown in the sample output.

Sample Input

21 2
18 2
18 18
100 7

Sample Output

21 2: 5 7 11

18 2: 3 5 7 11

18 18: 1 2 3 5 7 11 13 17

100 7: 13 17 19 23 29 31 37 41 43 47 53 59 61 67

问数字范围在 l 到 r 内的数中,大小排最中间的2k-1或者2k个是哪些

暴力

 #include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
bool mk[];
int p[],len;
int rnk[];
inline void getp()
{
p[++len]=;rnk[]=;
for (int i=;i<=;i++)
{
if (!mk[i])
{
p[++len]=i;
rnk[i]=len;
for (int j=*i;j<=;j+=i)mk[j]=;
}
}
}
int main()
{
getp();
while (~scanf("%d%d",&n,&m))
{
if (n<=)continue;
printf("%d %d:",n,m);
while (mk[n])n--;
int ls=rnk[n],l,r;
if (ls&)l=max(ls/+-m+,),r=min(ls/++m-,ls);
else l=max(ls/-m+,),r=min(ls/+m,ls);
for (int i=l;i<=r;i++)
{
printf(" %d",p[i]);
}
puts("\n");
}
}

poj 1595

[暑假集训--数论]poj1595 Prime Cuts的更多相关文章

  1. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  2. [暑假集训--数论]poj3518 Prime Gap

    The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not eq ...

  3. POJ1595 Prime Cuts

    Prime Cuts Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11961   Accepted: 4553 Descr ...

  4. [暑假集训--数论]hdu2136 Largest prime factor

    Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...

  5. [暑假集训--数论]poj2262 Goldbach's Conjecture

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...

  6. [暑假集训--数论]poj2909 Goldbach's Conjecture

    For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 ...

  7. [暑假集训--数论]poj2773 Happy 2006

    Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD ...

  8. [暑假集训--数论]hdu1019 Least Common Multiple

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  9. [暑假集训--数论]poj2115 C Looooops

    A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...

随机推荐

  1. vue入门之vue-cli安装项目

    第一步先安装nmp 在node.js的官网下载即可. 第二步 直接安装刚下载好的node.js即可,(这里建议不要修改node.js的安装路径),傻瓜式直接下一步即可 检测是否安装成功: 在cmd的控 ...

  2. MySQL - EXISTS 和 NOT EXISTS

    语法规则:   SELECT * FROM tableName t WHERE 1 = 1 AND 2 = 2 AND EXISTS (SELECT * FROM tableName t2 WHERE ...

  3. 1- vue django restful framework 打造生鲜超市

    Vue+Django REST framework实战 使用Python3.6与Django2.0.2(Django-rest-framework)以及前端vue开发的前后端分离的商城网站 项目支持支 ...

  4. ThinkPHP邮件发送S(Smtp + Mail + phpmailer)

    三种邮件发送介绍:(Smtp,Mail以及phpmailer)ThinkPhp 框架下开发. 邮件发送配置先前准备(用该账号做测试用):(这里用新浪邮箱服务器)将自己的新浪邮箱开通 POP3/SMTP ...

  5. 【Umezawa's Jitte】真正用起来svn来管理版本

    之前用过一次 但是没有真正的用起来 只是知道了一些基本概念 好了 决定开始真正的用这个svn了 参考大神http://www.cnblogs.com/wrmfw/archive/2011/09/08/ ...

  6. BFS:Nightmare(可返回路径)

    解题心得: 1.point:关于可以返回路径的BFS的标记方法,并非是简单的0-1,而是可以用时间比较之后判断是否push. 2.queue创建的地点(初始化问题),在全局中创建queue在一次调用B ...

  7. 洛谷 P3740 [HAOI2014]贴海报

    题目描述 Bytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论.为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙. 张贴规则如下: electo ...

  8. 校内考试之zay与银临(day1)

    T1大美江湖(洛谷P5006) zayの题解: 这个题的本质是模拟 不过有卡ceil的地方 ceil是对一个double进行向上取整,而对于int/int来说,返回值是int 举个生动的栗子 ceil ...

  9. Docker背后的内核知识(二)

    cgroups资源限制 上一节中Docker背后的内核知识(一),我们了解了Docker背后使用的资源隔离技术namespace,通过系统调用构建了一个相对隔离的shell环境,也可以称之为简单的“容 ...

  10. Fragment 和 Activity 之间通信

    在 Activity 中获取 Fragment 实例: FragmentManager 提供了一个类似于 findViewById 的方法,专门用于从布局文件中获取 Fragment 实例: //通过 ...