A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In this problem you are to write a program that will cut some number of prime numbers from the list of prime numbers between (and including) 1 and N. Your program will read in a number N; determine the list of prime numbers between 1 and N; and print the C*2 prime numbers from the center of the list if there are an even number of prime numbers or (C*2)-1 prime numbers from the center of the list if there are an odd number of prime numbers in the list.

Input

Each input set will be on a line by itself and will consist of 2 numbers. The first number (1 <= N <= 1000) is the maximum number in the complete list of prime numbers between 1 and N. The second number (1 <= C <= N) defines the C*2 prime numbers to be printed from the center of the list if the length of the list is even; or the (C*2)-1 numbers to be printed from the center of the list if the length of the list is odd.

Output

For each input set, you should print the number N beginning in column 1 followed by a space, then by the number C, then by a colon (:), and then by the center numbers from the list of prime numbers as defined above. If the size of the center list exceeds the limits of the list of prime numbers between 1 and N, the list of prime numbers between 1 and N (inclusive) should be printed. Each number from the center of the list should be preceded by exactly one blank. Each line of output should be followed by a blank line. Hence, your output should follow the exact format shown in the sample output.

Sample Input

21 2
18 2
18 18
100 7

Sample Output

21 2: 5 7 11

18 2: 3 5 7 11

18 18: 1 2 3 5 7 11 13 17

100 7: 13 17 19 23 29 31 37 41 43 47 53 59 61 67

问数字范围在 l 到 r 内的数中,大小排最中间的2k-1或者2k个是哪些

暴力

 #include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
bool mk[];
int p[],len;
int rnk[];
inline void getp()
{
p[++len]=;rnk[]=;
for (int i=;i<=;i++)
{
if (!mk[i])
{
p[++len]=i;
rnk[i]=len;
for (int j=*i;j<=;j+=i)mk[j]=;
}
}
}
int main()
{
getp();
while (~scanf("%d%d",&n,&m))
{
if (n<=)continue;
printf("%d %d:",n,m);
while (mk[n])n--;
int ls=rnk[n],l,r;
if (ls&)l=max(ls/+-m+,),r=min(ls/++m-,ls);
else l=max(ls/-m+,),r=min(ls/+m,ls);
for (int i=l;i<=r;i++)
{
printf(" %d",p[i]);
}
puts("\n");
}
}

poj 1595

[暑假集训--数论]poj1595 Prime Cuts的更多相关文章

  1. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  2. [暑假集训--数论]poj3518 Prime Gap

    The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not eq ...

  3. POJ1595 Prime Cuts

    Prime Cuts Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11961   Accepted: 4553 Descr ...

  4. [暑假集训--数论]hdu2136 Largest prime factor

    Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...

  5. [暑假集训--数论]poj2262 Goldbach's Conjecture

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...

  6. [暑假集训--数论]poj2909 Goldbach's Conjecture

    For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 ...

  7. [暑假集训--数论]poj2773 Happy 2006

    Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD ...

  8. [暑假集训--数论]hdu1019 Least Common Multiple

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  9. [暑假集训--数论]poj2115 C Looooops

    A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...

随机推荐

  1. iterable -------JavaScript

    本文摘要:http://www.liaoxuefeng.com/ 遍历Array可以采用下标循环,遍历Map和Set就无法使用下标.为了统一集合类型,ES6标准引入了新的iterable类型,Arra ...

  2. shell脚本,awk结合正则来打印文件里面的内容。

    文件内容如下:key1abc d key2 1.想得到如下结果: abc d 2.想得到如下结果: key1key2

  3. 操作系统(2)_进程管理_李善平ppt

    所有程序都有CPU和io这两部分,即使没有用户输入也有输出. CPU最好特别忙,io空闲无所谓. 程序/数据/状态 三个维度来看进程. 等待的资源可能是io资源或者通信资源(别的进程的答复). 一个进 ...

  4. http请求中客户端真实的ip

    private String getRemoteAddr() { String ip = ""; String unknow = "unknown"; try ...

  5. Mysql的一些纪要

    unsigned 整型的每一种都分无符号(unsigned)和有符号(signed)两种类型(float和double总是带符号的),在默认情况下声明的整型变量都是有符号的类型(char有点特别),如 ...

  6. jenkins+svn+pipeline+kubernetes部署java应用(三)

    将jar包.Dockerfile.kubernetes部署yaml文件上传至svn自定义目录 一.生成流水线脚本 二.配置jenkins pipeline构建语句 三.点击构建java工程

  7. (转)规划从 OpenGL ES 2.0 到 Direct3D 的移植

    如果你移植 iOS 或 Android 平台中的游戏,那么你可能需要在 OpenGL ES 2.0 方面进行大量投资.如果你准备将你的图形管道代码库移动到 Direct3D 11 和 Windows ...

  8. HTML5页面元素中的文本最快速替换replace()方法

    $.ajax({ type:"get", url:spanUrl, dataType:'jsonp', jsonpCallback:'jsonp',//jsonp数据,需要数据库提 ...

  9. Linux命令之---ls

    命令简介: ls(list)命令用来列出目标目录(缺省的话为当前目录)中所有的子目录和文件. 指令所在路径:/bin/ls 执行权限:All User 命令语法: ls [选项] [目录名] 命令参数 ...

  10. RCP 项目启动图片设置

    第一步 选择启动图片命名为 splash.bmp 第二步 添加 扩展点 然 后在右边的扩展元素细节中填入相应的信息,比如我们在这里的application属 性 为 org.vwpolo.rcp.ex ...