题目

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

输入格式

一行包含两个整数N,M,中间用空格分开.

输出格式

输出所有的方案数,由于值比较大,输出其mod 9999973

输入样例

1 3

输出样例

7

提示

除了在3个格子中都放满炮的的情况外,其它的都可以.

100%的数据中N,M不超过100

50%的数据中,N,M至少有一个数不超过8

30%的数据中,N,M均不超过6

题解

一道dp题

设\(f[i][j][k]\)表示前i行有j列放了一个炮,k列放了两个炮

每行最多放两个,分类讨论转移,是放在了没有炮的行还是有炮的,一个还是两个,全都放还是分别不同。

见代码

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000,P = 9999973;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int f[maxn][maxn][maxn],n,m;
int C(int x) {return x * (x - 1) >> 1;}
int main(){
n = read(); m = read();
f[0][0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
for (int k = 0; j + k <= m; k++){
f[i][j][k] = f[i - 1][j][k];
int& F = f[i][j][k];
if (j) F += (LL)(m - j - k + 1) * f[i - 1][j - 1][k] % P,F %= P;
if (j > 1) F += (LL)C(m - j - k + 2) * f[i - 1][j - 2][k] % P,F %= P;
if (k) F += (LL)(j + 1) * f[i - 1][j + 1][k - 1] % P,F %= P;
if (k > 1) F += (LL)C(j + 2) * f[i - 1][j + 2][k - 2] % P,F %= P;
if (k) F += (LL)j * (m - j - k + 1) % P * f[i - 1][j][k - 1] % P,F %= P;
}
int ans = 0;
for (int j = 0; j <= m; j++)
for (int k = 0; j + k <= m; k++)
ans = (ans + f[n][j][k]) % P;
printf("%d",ans);
return 0;
}

BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】的更多相关文章

  1. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  2. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  3. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  4. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  5. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  6. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  7. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  9. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

随机推荐

  1. 问题007:JDK版本与JRE版本不同导致java.exe执行类文件错误 java.lang.UnsupportedClassVersionError错误

    版本不同的原因是,Windows 系统之前安装了JRE 是别的版本的 解决方法,将其卸载,卸载后可以正常使用,不再错误提示.

  2. Oracle数据库学习(三)

    6.关于null 数据库中null是一个未知数,没有任何值:进行运算时使用nvl,但是结果仍为空:在聚集函数中只有全部记录为空才会返回null. 7.insert插入 (1)单行记录插入 insert ...

  3. 你所不知道的js的小知识点(1)

    1.js调试工具 debugger <div class="container"> <h3>debugger语句会产生一个断点,用于调试程序,并没有实际功能 ...

  4. 创建一个 Dynamic Web Project

    准备工作 一.修改 JDK Compliance level 二.创建 Dynamic Web Project Ctrl + N 三.配置网站服务器 tomcat 这里切记不要点击 Finish ,一 ...

  5. 对于新能源Can数据、电池BMS等字节和比特位的解析

    1.对于1个字节(8个bit)以上的数据需要先进行倒序(因为高位在前 低位在后). CanID CanData 排序后的 字节数据 十进制 分辨率(0.005) 偏移量(40) 0x18FEC117 ...

  6. 1- vue django restful framework 打造生鲜超市

    Vue+Django REST framework实战 使用Python3.6与Django2.0.2(Django-rest-framework)以及前端vue开发的前后端分离的商城网站 项目支持支 ...

  7. gitLab 服务器搭建 (自己服务器上搭建gitLab)

    环境 lunix(ubuntu) 1:添加文件 在   /etc/apt/sources.list.d/gitlab-ce.list 中添加一行 deb https://mirrors.tuna.ts ...

  8. 27.28. VUE学习之--事件修饰符之stop&capture&self&once实例详解

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Thinkphp 支付宝插件的引入 和调用

    本文版权归本宝宝所有 未得允许不得转载 下载地址传送门 https://doc.open.alipay.com/docs/doc.htm?spm=a219a.7629140.0.0.twLYka&am ...

  10. 适合学习C语言开源项目——嵌入式脚本语言 Berry

    嵌入式脚本语言 Berry github网址 :https://github.com/Skiars/berry Berry 是一款面向小型嵌入式系统的脚本语言,目前发布了 0.1.0 版本.相比于其他 ...