题面:

传送门

思路:

把P形花圃记录为0,C形记录为1,那么一段花圃就可以状态压缩成一个整数

那么,我们可以有这样的状压dp:

dp[i][S]表示前i个花圃,最后m个的状态为S的情况

如果这是一条链的花圃,那么直接状压转移就可以了,但是这道题是一个环

一个环上,前m-1个花圃会影响到后m-1个花圃的状态

因此我们考虑把这个环后面再“长出”m个花圃来,消除这种影响

具体做法是:

枚举所有合法的状态S,令dp[1][S]=1,其余为零,代表前m个的状态确定了然后递推

最后把dp[n+1][S]加入答案,代表最后m个(第1~0-m+1个)的状态为S

由于n比较大,因此需要预处理出转移,写成矩阵快速幂的形式(因为这里的递推显然是线性的)

Code:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mx 1e16
#define ll long long
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll n,m,K,MOD=1e9+;
struct ma{
ll a[][],n,m;
ma(){memset(a,,sizeof(a));n=m=;}
void clear(){memset(a,,sizeof(a));n=m=;}
const ma operator *(const ma &b){
ma re;re.n=n;re.m=b.m;ll i,j,k;
for(i=;i<=n;i++){
for(j=;j<=b.m;j++){
for(k=;k<=m;k++){
re.a[i][j]+=a[i][k]*b.a[k][j];
re.a[i][j]%=MOD;
}
}
}
return re;
}
const void operator =(const ma &b){
n=b.n;m=b.m;ll i,j;
for(i=;i<=n;i++) for(j=;j<=m;j++) a[i][j]=b.a[i][j];
}
}A,B,ans;
ll st[],cnt,in[];
ll count(ll x){
ll re=;
while(x){
if(x&) re++;
x>>=;
}
return re;
}
ma ppow(ma x,ma y,ll t){
while(t){
if(t&) x=x*y;
y=y*y;t>>=;
}
return x;
}
int main(){
n=read();m=read();K=read();
ll i,t1,t2,j;
for(i=;i<(<<m);i++){
if(count(i)<=K) st[++cnt]=i,in[i]=cnt;
}
A.n=;A.m=B.n=B.m=cnt;
for(i=;i<=cnt;i++){
t1=(st[i]<<)&((<<m)-);t2=t1+;
if(in[t1]) B.a[i][in[t1]]=;
if(in[t2]) B.a[i][in[t2]]=;
}
ll re=;
for(i=;i<=cnt;i++){
A.clear();A.a[][i]=;A.n=;A.m=cnt;
ans=ppow(A,B,n);
re+=ans.a[][i];re%=MOD;
}
printf("%lld",re%MOD);
}

[luogu1357] 花园 [dp+矩阵快速幂]的更多相关文章

  1. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  2. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  5. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  6. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  7. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  8. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  9. 瓷砖铺放 (状压DP+矩阵快速幂)

    由于方块最多涉及3行,于是考虑将每两行状压起来,dfs搜索每种状态之间的转移. 这样一共有2^12种状态,显然进行矩阵快速幂优化时会超时,便考虑减少状态. 进行两遍bfs,分别为初始状态可以到达的状态 ...

随机推荐

  1. Object.prototype.toString的应用

    使用Object.prototype上的原生toString()方法判断数据类型,使用方法如下: Object.prototype.toString.call(value)1.判断基本类型: Obje ...

  2. 国外常用代理IP对比【仅供参考】

    国外常用代理IP对比[仅供参考]http://www.it588.cn/vmware/2019-03-22/547.html

  3. samba性能调优,调优后,性能增加30%

    global中增加下面内容. [global]    use sendfile = yes    write raw = yes    read raw = yes    max xmit = 655 ...

  4. SummerVocation_Learning--java的线程机制

    线程:是一个程序内部的执行路径.普通程序只有main()一条路径.如下列程序: import java.lang.Thread; //导入线程实现包 public class Test_Thread ...

  5. linux 下nginx除了首页404的问题

    今天在部署tp5的时候除了首页能访问.其他都是not found 原因是 Nginx服务器默认不支持pathinfo,index.php后面的参数都没带上   在需要pathinfo支持的程序中 则无 ...

  6. 为什么90%的IT人员都不适合做老大?

    什么是格局? 格局就是能够很好的平衡短期利益和长期利益. 过分注重短期利益的人必然会失去长期利益,到头来一定会很普通. 例如:跳槽不断,可能短期薪资会增长,但长期来看后劲可能会不足,未来发展空间会变窄 ...

  7. vscode运行C/C++程序及配置

    安装vscdoe,安装tdm-gcc-64编译器,这样可以自动把mingw的目录添加到环境变量中,其实安装其他编译器本版都可以,只要手动添加环境变量即可.平台win10-64位.此文参考了哔哩哔哩的配 ...

  8. 从0到n-1中随机等概率输出m个不同的数

    //假设输入的n远大于m void knuth(int n, int m) { for (int i = 0; i < n; i++) { if (rand() % (n - i)<m) ...

  9. 笔记-python-装饰器

    笔记-python-装饰器 1.  装饰器 装饰器的实质是返回的函数对象的函数,其次返回的函数对象是可以调用的,搞清楚这两点后,装饰器是很容易理解的. 1.1.  相关概念理解 首先,要理解在Pyth ...

  10. ZeroClipboard_copy

    //<script src="js/ZeroClipboard.js" type="text/javascript"></script> ...