To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12697    Accepted Submission(s):
6090

Problem Description
Given a two-dimensional array of positive and negative
integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all the
elements in that rectangle. In this problem the sub-rectangle with the largest
sum is referred to as the maximal sub-rectangle.

As an example, the
maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4
1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1
8

and has a sum of 15.

 
Input
The input consists of an N x N array of integers. The
input begins with a single positive integer N on a line by itself, indicating
the size of the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2 integers of the
array, presented in row-major order. That is, all numbers in the first row, left
to right, then all numbers in the second row, left to right, etc. N may be as
large as 100. The numbers in the array will be in the range
[-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
题意:二维的矩阵,从中找到一个子矩阵,使得子矩阵的和最大。
思路:可以先考虑一维的情况,一维时即数列,求数列中连续子列的和的最大值,做法就是在线处理,从头到尾一个一个元素考虑并累加过去,记当前累加值为sum,若累加的时候当前sum值小于0了,那么舍弃前面的累加列,sum更新为0,并且从下一个位置
的元素重新开始累加,途中不断的更新sum,找出最大的sum值即可,二维的情况可以看作一维的延伸情况,如果把列固定住(即选取矩阵连续的几列并固定,先算好每一行的这几列的和值),此时纵向的从上到下累加就可以看成是一维情况下的累加,算法类同。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<functional>
using namespace std;
const int N_MAX= +;
int a[N_MAX][N_MAX];
int sum[N_MAX][N_MAX];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
memset(sum,,sizeof(sum));
memset(a, ,sizeof(a));
for (int i = ; i < n; i++) {
for (int j = ; j <= n; j++) {
scanf("%d", &a[i][j]);
}
}
for (int i = ; i < n; i++) {
for (int j = ; j <= n; j++) {
sum[i][j] =sum[i][j-]+ a[i][j];
}
} int res = -INT_MAX;
for (int i = ; i < n; i++) {//固定i,j
for (int j = i+; j <= n; j++) {
int S = ;
for (int k = ; k < n; k++) {
S += sum[k][j]-sum[k][i-];//累加上闭区间[i,j]值的和
if (S > res)
res = S;
if (S < )S = ; }
}
}
printf("%d\n",res); }
return ;
}
 
思路
 

poj 1081 To The Max的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. hdu 1081 &amp; poj 1050 To The Max(最大和的子矩阵)

    转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...

  3. POJ 1050 To the Max 暴力,基础知识 难度:0

    http://poj.org/problem?id=1050 设sum[i][j]为从(1,1)到(i,j)的矩形中所有数字之和 首先处理出sum[i][j],此时左上角为(x1,y1),右下角为(x ...

  4. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  5. poj 1050 To the Max (简单dp)

    题目链接:http://poj.org/problem?id=1050 #include<cstdio> #include<cstring> #include<iostr ...

  6. POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)

    传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  7. poj - 1050 - To the Max(dp)

    题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...

  8. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  9. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

随机推荐

  1. Nat Nanotechnol | 朱涛/陈春英等合作发现碳纳米管呼吸暴露后的延迟毒性导致小鼠原位乳腺肿瘤的多发性广泛转移

    碳纳米管(Carbon nanotube, CNT)是重要的一维纳米材料,由于其良好的力学.电学和化学性能,可用作超强纤维.隐身材料.大功率超级电容器.传感器等,在纳米材料.信息.光电.能源.传感及生 ...

  2. Mysql查询指定用户并列排名 类似rank函数

    SELECT total.* FROM ( SELECT obj.uid, obj.score, CASE WHEN @rowtotal = obj.score THEN @rownum WHEN @ ...

  3. 巧用 Odoo act_window 的 flags实现一些个性化的视图控制

    转自:http://www.khcloud.net:4082/?thread-58.htm 'flags': { 'sidebar': False, //是否显示sidebar区域(主要为action ...

  4. pandas关联mysql并读写数据库

    1.代码读写mysql,必须安装关联mysql的工具 操作如下命令: sudo apt-get install mysql-server mysql-clientsudo apt-get instal ...

  5. Windows7设置局域网文件共享

    首先要实现共享必须设置共享的机器与访问共享的机器在同一个工作组中. 右键桌面上的计算机图标=>属性 如果不一样的话,就需要点击[更改设置] 右键要共享的文件或者文件夹,点击[共享]打开共享标签: ...

  6. 【java】类成员的访问限制关系

  7. debian软raid

    http://www.linuxidc.com/Linux/2013-06/86487.htm  

  8. Centos7 开机显示 ERST: Failed to get Error Log Address Range” 导致无法开机解决方法

    开机显示 ERST: Failed to get Error Log Address Range”   导致无法开机,也无法重新安装系统,解决方法:开机进入BIOS , 关闭ACPI选项即可正常开机

  9. CentOS-文件操作

    centos彻底删除文件夹.文件命令(centos 新建.删除.移动.复制等命令: 1.新建文件夹 mkdir 文件名 新建一个名为test的文件夹在home下 view source1 mkdir ...

  10. loadrunner参数化数据分配方法

    数据分配方法: 在“Select next row“列表中选择一个数据分配方法,以指示在Vuser脚本执行期间如何从参数文件中取得数据.选项包括”Sequential“.“Random”.“Uniqu ...