POJ1830(异或高斯消元)
对于某个开关,都有n个选项可能影响它的结果,如果会影响,则系数为1,否则系数为0;最后得到自由元的个数,自由元可选0也可选1.
#include <cstdio>
#include <algorithm>
int T, n, a[30], x, y;
int gauss() {
for (int i = 1; i <= n; i++) {
//列主
for (int j = i + 1; j <= n; j++) {
if (a[j] > a[i]) {
std::swap(a[i], a[j]);
}
}
if (a[i] == 0) return 1 << (n - i + 1);
if (a[i] == 1) return -1;
//消元
for (int k = n; k; k--) {
if (a[i] & (1 << k)) {
for (int j = 1; j <= n; j++) {
if (i != j && a[j] & (1 << k)) {
a[j] ^= a[i];
}
}
break;
}
}
}
return 1;
}
int main(int argc, char const *argv[]) {
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1, j; i <= n; i++) {
scanf("%d", &j);
a[i] ^= j;//等号右侧
a[i] |= 1 << i;//a[i][i] = 1
}
while (~scanf("%d %d", &x, &y) && (x | y)) {
a[y] |= 1 << x;//a[y][x] = 1
}
int ans = gauss();
if (ans > 0) printf("%d\n", ans);
else puts("Oh,it's impossible~!!");
}
return 0;
}
POJ1830(异或高斯消元)的更多相关文章
- POJ 1222【异或高斯消元|二进制状态枚举】
题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...
- poj1830开关问题——异或高斯消元
题目:http://poj.org/problem?id=1830 根据题意,构造出n元方程组: a(1,1)x1 ^ a(1,2)x2 ^ a(1,3)x3 ... a(1,n)xn = st1 ^ ...
- SGU 260.Puzzle (异或高斯消元)
题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
- poj1830 开关问题[高斯消元]
其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- SGU 275 To xor or not to xor(高斯消元)
题意: 从n个数中选若干个数,使它们的异或和最大.n<=100 Solution 经典的异或高斯消元. //O(60*n) #include <iostream> using nam ...
- 高斯消元 & 线性基【学习笔记】
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
随机推荐
- (1)Java多线程编程核心——Java多线程技能
1.为什么要使用多线程?多线程的优点? 提高CPU的利用率 2.什么是多线程? 3.Java实现多线程编程的两种方式? a.继承Thread类 public class MyThread01 exte ...
- python循环次数的使用
a=[str(i) for i in range(88888,88912)] b=[str(i) for i in range(77777,77785)] def f(a,b,k=0,m=0): n= ...
- .net中后台c#数组与前台js数组交互
第一步:定义cs数组 cs文件里后台程序中要有数组,这个数组要定义成公共的数组. public string[] lat = null; public string[] lng = null; ...
- navicat for mysql 安装
直接上正题,用于记录 1.下载linux版本的navicat:http://www.navicat.com/download/navicat-for-mysql 2.解压 tar -vzxf navi ...
- MyBatis映射文件中用#和$传递参数的特点
在MyBatis映射文件中用#和$传递参数的特点, #是以占位符的形式来传递对应变量的参数值的,框架会对传入的参数做预编译的动作, 用$时会将传入的变量的参数值原样的传递过去,并且用$传递传递参数的时 ...
- UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-3: ordinal not in range(128)
py文件直接在cmd窗口用python命令执行时正常:代码逐句在ipython中也正常:但是, 在wingIDE中运行报错“UnicodeEncodeError: 'ascii' codec can' ...
- ZigBee简介
前言 目前,中国大力推广的物联网是zigbee 应用的主战场,物联网通过智能感知.识别技术与普适计算(我还特意申请了个域名psjs.vip).泛在网络的融合应用,被称为继计算机.互联网之后世界信息产业 ...
- TCP点对点穿透探索--失败
TCP点对点穿透探索 点对点穿透是穿透什么 点对点穿透,需要实现的是对NAT的穿透.想实现NAT的穿透,当然要先了解NAT到底是什么,以及NAT是用来干什么的.NAT全称Network Address ...
- Java中的内部类介绍(1)
栗子1: package campu; //外部类 class Out{ private int age =12; //内部类 class In{ public void print(){ Syste ...
- Docker入门(四):服务(Services)
这个<Docker入门系列>文档,是根据Docker官网(https://docs.docker.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指 ...