POJ1830(异或高斯消元)
对于某个开关,都有n个选项可能影响它的结果,如果会影响,则系数为1,否则系数为0;最后得到自由元的个数,自由元可选0也可选1.
#include <cstdio>
#include <algorithm>
int T, n, a[30], x, y;
int gauss() {
for (int i = 1; i <= n; i++) {
//列主
for (int j = i + 1; j <= n; j++) {
if (a[j] > a[i]) {
std::swap(a[i], a[j]);
}
}
if (a[i] == 0) return 1 << (n - i + 1);
if (a[i] == 1) return -1;
//消元
for (int k = n; k; k--) {
if (a[i] & (1 << k)) {
for (int j = 1; j <= n; j++) {
if (i != j && a[j] & (1 << k)) {
a[j] ^= a[i];
}
}
break;
}
}
}
return 1;
}
int main(int argc, char const *argv[]) {
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1, j; i <= n; i++) {
scanf("%d", &j);
a[i] ^= j;//等号右侧
a[i] |= 1 << i;//a[i][i] = 1
}
while (~scanf("%d %d", &x, &y) && (x | y)) {
a[y] |= 1 << x;//a[y][x] = 1
}
int ans = gauss();
if (ans > 0) printf("%d\n", ans);
else puts("Oh,it's impossible~!!");
}
return 0;
}
POJ1830(异或高斯消元)的更多相关文章
- POJ 1222【异或高斯消元|二进制状态枚举】
题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...
- poj1830开关问题——异或高斯消元
题目:http://poj.org/problem?id=1830 根据题意,构造出n元方程组: a(1,1)x1 ^ a(1,2)x2 ^ a(1,3)x3 ... a(1,n)xn = st1 ^ ...
- SGU 260.Puzzle (异或高斯消元)
题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...
- Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...
- poj1830 开关问题[高斯消元]
其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- SGU 275 To xor or not to xor(高斯消元)
题意: 从n个数中选若干个数,使它们的异或和最大.n<=100 Solution 经典的异或高斯消元. //O(60*n) #include <iostream> using nam ...
- 高斯消元 & 线性基【学习笔记】
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
随机推荐
- html5--2.7新的布局元素(4)-time
html5--2.7新的布局元素(4)-time 学习要点 了解微格式的概念 掌握time元素的用法 微格式的概念 HTML5中的微格式,是一种利用HTML5中的新标签对网页添加附加信息的方法,附加信 ...
- tensorflow knn mnist
# MNIST Digit Prediction with k-Nearest Neighbors #----------------------------------------------- # ...
- ivew组件的使用
iview的官网:https://www.iviewui.com/docs/guide/start 1.选择快速上手 2.安装 解压,cmd,cd进你解压后的文件,cnpm i 3.打包 npm ru ...
- 如何在Mac下显示Finder中的所有文件
在Unix下工作,你可能需要处理一些“特殊“文件或文件夹,例如/usr,/bin, etcf,或一些"dot files"(如.bash_profile).但是Linux/Unix ...
- HDU6118:度度熊的交易计划(入门级最小费用可行流)
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题: 喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区. 由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但 ...
- bzoj 4883 [Lydsy1705月赛]棋盘上的守卫——并查集(思路!)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 把各行和各列看成n+m个点. 如果一下能防守行和列,就是最大匹配了.这是每两个左右部点 ...
- C#编译问题'System.Collections.Generic.IEnumerable' does not contain a definition for 'Where' and no extension method 'Where' accepting a first argument
'System.Collections.Generic.IEnumerable<string>' does not contain a definiti ...
- C++的函数重载与C参数个数不一致时的编译
C++的函数重载意味着函数名和返回值类型相同,但是参数个数和/或类型不同.在编译过程中编译器一般会把各个参数的类型连接到函数名内组成新的函数名,以区分各个重载函数. C语言不支持函数重载.但是有时候虽 ...
- 【238】◀▶IEW-Unit03
Unit 3 Media 柱状图 1.图片及model1分析 The graph below contains information about the average science test s ...
- Ubuntu Navicat for&nbs…
首先上官网上下载LINUX版本: http://www.navicat.com/download 1. 下载 navicat110_mysql_en.tar.gz 文件 2. 下载后解压tar文件 t ...