关于欧几里德算法(gcd)的证明
求a,b的最大公约数我们经常用欧几里得算法解决,也称辗转相除法,
代码很简短,
int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}
但其中的道理却很深刻,完全理解不简单,以前都只是记一下代码,今天研究了很久,才差不多理解了其中的原因
从代码可以看出,gcd(a,b)=gcd(b,a%b),关键就在于证明这个等式
证明如下,
设c=gcd(a,b),则a=kc,b=nc(n,c为正整数),
设r=a%b,可得r=a-mb(m为a/b向下取整),
将a,b代入,得r=kc-mnc=(k-mn)c,
可证(k-mn)与n互质,过程如下
反证法,若(k-mn)与n不互质,则存在正整数d(d>1)使得k-mn=xd,n=yd,
则k=mn+xd=myd+xd=(my+x)d,
那么a=kc=(my+x)dc,b=nc=ydc,在这里gcd(a,b)变成了dc,而d>1则dc<>c,不成立
所以k-mn与n互为质数
接下来令t=k-mn,那么r=tc,可以发现b=nc且n与t互质,那么gcd(b,r)会等于c
从而得出gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)的结论
Hint
那么为什么不能是gcd(a,b)=gcd(a,r)呢?这个问题其实不难,因为a=kc,无法证明k与k-mn互质
按照上面的步骤,k-mn=xd,k=yd(d>1),只能得出k=mn+xd=yd,这个式子并没有什么卵用
可以自己举几个例子试试,
例如gcd(99,15),99%15=9,9与15互质,可化为gcd(15,9),最终答案为3
而如果用gcd(a,r),转为gcd(99,9),最终答案为9,这就是是因为9=3*3,99=3*33,而3与33不互质
End
蒟蒻的推理到此结束,如有不对的地方还望提出
关于欧几里德算法(gcd)的证明的更多相关文章
- 欧几里德算法gcd及其拓展终极解释
这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解 扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n ...
- 欧几里德算法 GCD
递归: int gcd(int a,int b) { ?a:gcd(b,a%b); } 非递归: int gcd(int m,int n) { int r; ) { m=n; n=r; } retur ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 欧几里德算法及其扩展(推导&&模板)
有关欧几里德算法整理: 1.一些相关概念: <1>.整除性与约数: ①一个整数可以被另外一个整数整除即为d|a(表示d整除a,通俗的说是a可以被d整除),其含义也可以说成,存在某个整数k, ...
- ACM_扩展欧几里德算法
<pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...
- ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)
为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相 ...
- [Python3 练习] 008 欧几里德算法
题目:写个"欧几里德算法"的小程序 (1) 描述 我知识浅薄,一开始被"欧几里德"的大名唬住了,去搜了一下才知道这就是高中时学过的"辗转相除法&quo ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- POJ 1061青蛙的约会(拓展欧几里德算法)
题目链接: 传送门 青蛙的约会 Time Limit: 1000MS Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
随机推荐
- Visual Studio中的引用项目和直接引用DLL文件
在VS中引用类库时有多种方法,其中用的最多的就是在引用时选择项目选项卡引用本解决方案下的类库项目和选择浏览选项卡直接引用类库DLL文件,实际上这两种引用方式略有不同,今天就为大家总结下. C#本地项目 ...
- SpringMVC04 很杂很重要(注解,乱码处理,通配符,域属性调用,校正参数名称,访问路径,请求、响应携带参数,请求方法)
1.导入架包 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3 ...
- 玩转spring ehcache 缓存框架
一.简介 Ehcache是一个用Java实现的使用简单,高速,实现线程安全的缓存管理类库,ehcache提供了用内存,磁盘文件存储,以及分布式存储方式等多种灵活的cache管理方案.同时ehcache ...
- ArcGIS API for Javascript 使用缓冲区结果做query查询出现“esri.config.defaults.io.proxyUrl 尚未进行设置”错误
1.前言 在研究ArcGIS API for JavaScript时会遇到这样的问题,比如我们在做缓冲区分析时,用分析的范围作为空间查询query的参数,在执行结果中总是会看到“esri.config ...
- Python学习笔记-day1(if流程控制)
在python中,流程控制语句为强制缩进(4空格) if username=='lmc' and password=='123456': print('Welcome User {name} logi ...
- 新客户上云 - 来自 Azure 技术支持部门的忠告
本课程内容是来自 Azure 中国技术支持团队对新客户上云的忠告. 对于上云的新用户,Azure 技术支持部门有如下忠告: 1. 时刻关注并理解以下网站的变动来优化资源配置,更新设计方案. Azure ...
- int _tmain(int argc, _TCHAR* argv[])
int _tmain(int argc, _TCHAR* argv[]){ int i; for (i = 0; i<argc; i++) cout<<argv[i]<< ...
- 用户在设置密码时,提醒请输入半角字符(vue+element+valid)
要保证callback()只有一个出口 rules:{ newPassword: [{validator:(rule,newPassword,callback)=>{ var all = fal ...
- POJ 2104 K-th Number(分桶,线段树,主席树)
一道比较经典的数据结构题.可以用多种方式来做. 一,分桶法(平方分解). 根据数字x的大小和区间内不大于x的数字数量cnt的单调性,可知第k大数kth对应的cnt应该满足cnt≥k, 且kth是满足条 ...
- Android(java)学习笔记152:采用get请求提交数据到服务器(qq登录案例)
1.GET请求: 组拼url的路径,把提交的数据拼装url的后面,提交给服务器. 缺点:(1)安全性(Android下提交数据组拼隐藏在代码中,不存在安全问题) (2)长度有限不能超过4K(h ...