POJ 2151 Check the difficulty of problems:概率dp【至少】
题目链接:http://poj.org/problem?id=2151
题意:
一次ACM比赛,有t支队伍,比赛共m道题。
第i支队伍做出第j道题的概率为p[i][j].
问你所有队伍都至少做出一道,并且有队伍做出至少n道的概率。
题解:
关于【至少】问题的表示。
对于每一支队伍:
mst[i][j] = P(第i支队伍做出至多j道题)
则 P(第i支队伍做出至少j道题) = 1 - mst[i][j-1]
对于所有队伍:
P(所有队伍至少答出一题) = ∏ (1 - mst[i][0])
P(所有队伍答题数在1到n-1) = ∏ (mst[i][n-1] - mst[i][0])
所以答案:
P(所有队伍至少答出一题,且有队伍做出至少n道) = P(所有队伍至少答出一题) - P(所有队伍答题数在1到n-1)
所以求mst数组好啦~~~
dp[i][j][k] = probability
i:第i支队伍
j:考虑到前j道题(包含j)
k:恰好做出k道
所以 mst[i][j] = sigma(dp[i][m][0 to j])
怎么求dp数组呢:
转移:dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j])
边界:dp[i][0][0] = 1, others = 0
所以这道题:先求dp,再求mst,最后统计ans。
AC Code:
// state expression:
// dp[i][j][k] = probability
// i: ith team
// j: jth question and before
// k: solved k questions
// mst[i][j]
// i: ith team
// j: all the teams solved at most j questions
//
// find the answer:
// P(all 1 to m) - P(all 1 to n-1)
//
// transferring:
// dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j])
//
// boundary:
// dp[i][0][0] = 1
// others = 0
//
// calculate:
// mst[i][j] = sigma dp[i][m][0 to j]
// P1 = pi (1 - mst[i][0])
// P2 = pi (mst[i][n-1] - mst[i][0])
//
// step:
// 1) cal dp
// 2) cal mst
// 3) cal ans
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_T 1005
#define MAX_N 35
#define MAX_M 35 using namespace std; int n,m,t;
double p1,p2;
double p[MAX_T][MAX_M];
double dp[MAX_T][MAX_M][MAX_M];
double mst[MAX_T][MAX_M]; void read()
{
for(int i=;i<=t;i++)
{
for(int j=;j<=m;j++)
{
cin>>p[i][j];
}
}
} void cal_dp()
{
memset(dp,,sizeof(dp));
for(int i=;i<=t;i++)
{
dp[i][][]=;
for(int j=;j<=m;j++)
{
for(int k=;k<=m;k++)
{
if(k->=) dp[i][j][k]+=dp[i][j-][k-]*p[i][j];
dp[i][j][k]+=dp[i][j-][k]*(-p[i][j]);
}
}
}
} void cal_mst()
{
// mst[i][j] = sigma dp[i][m][0 to j]
memset(mst,,sizeof(mst));
for(int i=;i<=t;i++)
{
for(int j=;j<=m;j++)
{
for(int k=;k<=j;k++)
{
mst[i][j]+=dp[i][m][k];
}
}
}
} void cal_ans()
{
// P1 = pi (1 - mst[i][0])
// P2 = pi (mst[i][n-1] - mst[i][0])
p1=1.0;
p2=1.0;
for(int i=;i<=t;i++)
{
p1*=(-mst[i][]);
p2*=(mst[i][n-]-mst[i][]);
}
} void solve()
{
cal_dp();
cal_mst();
cal_ans();
} void print()
{
printf("%.3f\n",p1-p2);
} int main()
{
while(cin>>m>>t>>n)
{
if(m== && t== && n==) break;
read();
solve();
print();
}
}
POJ 2151 Check the difficulty of problems:概率dp【至少】的更多相关文章
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...
- [ACM] POJ 2151 Check the difficulty of problems (概率+DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4748 ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
- POJ 2151 Check the difficulty of problems (动态规划-可能DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4522 ...
- POJ 2151 Check the difficulty of problems
以前做过的题目了....补集+DP Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K ...
- poj 2151 Check the difficulty of problems(概率dp)
poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...
- POJ 2151 Check the difficulty of problems (概率dp)
题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...
- [POJ2151]Check the difficulty of problems (概率dp)
题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...
- POJ2157 Check the difficulty of problems 概率DP
http://poj.org/problem?id=2151 题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...
随机推荐
- (转)来自互联网巨头的46个用户体验面试问题(谷歌,亚马逊,facebook及微软)
原文出处: uxdesign - Eleonora Zucconi 译文出处:UXRen - 邓俊杰 如果你是个正在找工作的用户体验研究员,或是一个招聘经理正急需一些启发性问题来测试你的候选人,这 ...
- Git 学习之--安装配置GitHub
楼主今天学习了一下Git的使用,而且Androdi studio 下加入了Git插件,成功提交项目到自己Github个人主页 watermark/2/text/aHR0cDovL2Jsb2cuY3Nk ...
- 解析iscroll-小demo
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- 配置fio支持rbd測试引擎
fio的rbd測试引擎能够非常方便的对rbd进行測试.以下示范怎样安装fio支持rbd引擎. git clone git://git.kernel.dk/fio.git $ cd fio $ ./co ...
- ui-router $transitions 用法
1. //route redirection $transitions.onStart({to: 'manage'}, function (trans) { var params = trans.pa ...
- ubuntu 安装时遇到 hash sum mismatch 处理方法
ubuntu安装大软件时,下载经常容易出错,hash sum mismatch是其中一种,说到底还是网络不好,重试很多遍都是这个错误,最后的解决方案是把mismatch说的那个链接用firefox打开 ...
- IOS-4-面试题1:黑马程序猿IOS面试题大全
一.多线程网络 1. 多线程的底层实现? 1> 首先搞清楚什么是线程.什么是多线程 2> Mach是第一个以多线程方式处理任务的系统.因此多线程的底层实现机制是基于Mach的线程 3> ...
- 卡特兰数-Catalan数
卡特兰数的含义: 说到卡特兰数,就不得不提及卡特兰数序列.卡特兰数序列是一个整数序列.其通项公式是我们从中取出的就叫做第n个卡特兰数数,前几个卡特兰数数是:1, 1, 2, 5, 14, 42, 13 ...
- iframe子页面获取父页面元素的方法
在iframe子页面获取父页面元素 代码如下: $.('#objld', parent.document); 在父页面获取iframe子页面的元素 代码如下: $("#objid" ...
- 前端编程提高之旅(三)----浏览器兼容之IE6
在爱奇艺实习期间,乐帝主要负责移动端活动页面的制作,因为移动浏览器是随着智能手机兴起的,这就决定了移动端不会重蹈浏览器兼容问题的覆辙.一開始就比較好的支持web标准,而纵观整个互联网行业,移动web开 ...