POJ 2151 Check the difficulty of problems:概率dp【至少】
题目链接:http://poj.org/problem?id=2151
题意:
一次ACM比赛,有t支队伍,比赛共m道题。
第i支队伍做出第j道题的概率为p[i][j].
问你所有队伍都至少做出一道,并且有队伍做出至少n道的概率。
题解:
关于【至少】问题的表示。
对于每一支队伍:
mst[i][j] = P(第i支队伍做出至多j道题)
则 P(第i支队伍做出至少j道题) = 1 - mst[i][j-1]
对于所有队伍:
P(所有队伍至少答出一题) = ∏ (1 - mst[i][0])
P(所有队伍答题数在1到n-1) = ∏ (mst[i][n-1] - mst[i][0])
所以答案:
P(所有队伍至少答出一题,且有队伍做出至少n道) = P(所有队伍至少答出一题) - P(所有队伍答题数在1到n-1)
所以求mst数组好啦~~~
dp[i][j][k] = probability
i:第i支队伍
j:考虑到前j道题(包含j)
k:恰好做出k道
所以 mst[i][j] = sigma(dp[i][m][0 to j])
怎么求dp数组呢:
转移:dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j])
边界:dp[i][0][0] = 1, others = 0
所以这道题:先求dp,再求mst,最后统计ans。
AC Code:
// state expression:
// dp[i][j][k] = probability
// i: ith team
// j: jth question and before
// k: solved k questions
// mst[i][j]
// i: ith team
// j: all the teams solved at most j questions
//
// find the answer:
// P(all 1 to m) - P(all 1 to n-1)
//
// transferring:
// dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j])
//
// boundary:
// dp[i][0][0] = 1
// others = 0
//
// calculate:
// mst[i][j] = sigma dp[i][m][0 to j]
// P1 = pi (1 - mst[i][0])
// P2 = pi (mst[i][n-1] - mst[i][0])
//
// step:
// 1) cal dp
// 2) cal mst
// 3) cal ans
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_T 1005
#define MAX_N 35
#define MAX_M 35 using namespace std; int n,m,t;
double p1,p2;
double p[MAX_T][MAX_M];
double dp[MAX_T][MAX_M][MAX_M];
double mst[MAX_T][MAX_M]; void read()
{
for(int i=;i<=t;i++)
{
for(int j=;j<=m;j++)
{
cin>>p[i][j];
}
}
} void cal_dp()
{
memset(dp,,sizeof(dp));
for(int i=;i<=t;i++)
{
dp[i][][]=;
for(int j=;j<=m;j++)
{
for(int k=;k<=m;k++)
{
if(k->=) dp[i][j][k]+=dp[i][j-][k-]*p[i][j];
dp[i][j][k]+=dp[i][j-][k]*(-p[i][j]);
}
}
}
} void cal_mst()
{
// mst[i][j] = sigma dp[i][m][0 to j]
memset(mst,,sizeof(mst));
for(int i=;i<=t;i++)
{
for(int j=;j<=m;j++)
{
for(int k=;k<=j;k++)
{
mst[i][j]+=dp[i][m][k];
}
}
}
} void cal_ans()
{
// P1 = pi (1 - mst[i][0])
// P2 = pi (mst[i][n-1] - mst[i][0])
p1=1.0;
p2=1.0;
for(int i=;i<=t;i++)
{
p1*=(-mst[i][]);
p2*=(mst[i][n-]-mst[i][]);
}
} void solve()
{
cal_dp();
cal_mst();
cal_ans();
} void print()
{
printf("%.3f\n",p1-p2);
} int main()
{
while(cin>>m>>t>>n)
{
if(m== && t== && n==) break;
read();
solve();
print();
}
}
POJ 2151 Check the difficulty of problems:概率dp【至少】的更多相关文章
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...
- [ACM] POJ 2151 Check the difficulty of problems (概率+DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4748 ...
- POJ 2151 Check the difficulty of problems (概率DP)
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...
- POJ 2151 Check the difficulty of problems (动态规划-可能DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4522 ...
- POJ 2151 Check the difficulty of problems
以前做过的题目了....补集+DP Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K ...
- poj 2151 Check the difficulty of problems(概率dp)
poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...
- POJ 2151 Check the difficulty of problems (概率dp)
题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...
- [POJ2151]Check the difficulty of problems (概率dp)
题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...
- POJ2157 Check the difficulty of problems 概率DP
http://poj.org/problem?id=2151 题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...
随机推荐
- lnmp环境网页访问慢排查思路
1.首先看每个服务器的负载情况 2.若各个服务器负载不高 首先查看是不是负载均衡服务器问题相接访问web服务看是否慢,若也慢则查看是不是访问动态页面慢,创建一个静态页面访问试试,若不慢则是动态页面问题 ...
- MySQL具体解释(14)----------事务处理
前言:前一篇文章关于事务处理的博文没有写清楚,读起来非常晦涩.非常难理解,所以有整理了一些资料,帮助理解.见谅! 关于MySQL事务处理学习记 START TRANSACTION COMMIT ROL ...
- asp.net模拟请求
在asp.net模拟请求,微软在控件状态有安全性控制. __VIEWSTATE.__EVENTVALIDATION要与服务端页面(.aspx)中元素信息保存一致.
- js向后台传递对象
js: }; $.ajax({ url: "/.../...", type: "POST", async: false, data: JSON.stringif ...
- Django--分页、session
分页 分页的实现,是由我们自己写的后端代码组建而成,这段写的代码可以直接放在以后的任何分页结构中使用. 先来谈谈原始逻辑: 主页代码如下: <!DOCTYPE html> <html ...
- 美景听听Ai语音导游,助力华为荣耀PLAY手机发布
6月6日,荣耀PLAY科技酷玩新品发布会在北京大学生体育馆如期举办,美景听听Ai语音讲解助力新EUMI系统智慧旅行成新卖点,震撼登场! 随着生活水平的不断提升,出门旅行已经成了许多亲们释放压力.调节自 ...
- js关闭浏览器事件,js关闭浏览器提示及相关函数
关于浏览器关闭事件的相关描述 有些朋友想在浏览器关闭的时候,弹出alert .confirm或者prompt等.实验证明,这种做法是失败的,原因是浏览器关闭事件自动屏蔽执行js的某些方法,从而防止恶意 ...
- Dubbo--简单介绍
Dubbo是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,能够和Spring框架无缝集成.Dubbo致力于提供高性能和透明化的RPC远程服务调用 ...
- web翻译——插件
很多时候,可能我们web项目中需要的只是机械式的翻译,并不需要什么利用xml或者js json等等实现逼真翻译,那样工作量太大.这时候可能你就需要这几款小工具来帮助你.当然,如果 对翻译或者你的项目外 ...
- mnesia的脏读和事物读的测试
在mnesia中,有脏读脏写等以及事物读写,它们的差异通过测试不难发现: 代码如下: -module(mnesia_read_test). -compile(export_all). -record( ...