Pluggable Similarity Algorithms

Before we move on from relevance and scoring, we will finish this chapter with a more advanced subject: pluggable similarity algorithms. While Elasticsearch uses the Lucene’s Practical Scoring Function as its default similarity algorithm, it supports other algorithms out of the box, which are listed in the Similarity Modules documentation.

Okapi BM25

The most interesting competitor to TF/IDF and the vector space model is called Okapi BM25, which is considered to be a state-of-the-art ranking function. BM25 originates from the probabilistic relevance model, rather than the vector space model, yet the algorithm has a lot in common with Lucene’s practical scoring function.

Both use term frequency, inverse document frequency, and field-length normalization, but the definition of each of these factors is a little different. Rather than explaining the BM25 formula in detail, we will focus on the practical advantages that BM25 offers.

Term-frequency saturation

Both TF/IDF and BM25 use inverse document frequency to distinguish between common (low value) words and uncommon (high value) words. Both also recognize (see Term frequency) that the more often a word appears in a document, the more likely is it that the document is relevant for that word.

However, common words occur commonly. The fact that a common word appears many times in one document is offset by the fact that the word appears many times in all documents.

However, TF/IDF was designed in an era when it was standard practice to remove the most common words (or stopwords, see Stopwords: Performance Versus Precision) from the index altogether. The algorithm didn’t need to worry about an upper limit for term frequency because the most frequent terms had already been removed.

In Elasticsearch, the standard analyzer—the default for string fields—doesn’t remove stopwords because, even though they are words of little value, they do still have some value. The result is that, for very long documents, the sheer number of occurrences of words like the and and can artificially boost their weight.

BM25, on the other hand, does have an upper limit. Terms that appear 5 to 10 times in a document have a significantly larger impact on relevance than terms that appear just once or twice. However, as can be seen in Figure 34, “Term frequency saturation for TF/IDF and BM25”, terms that appear 20 times in a document have almost the same impact as terms that appear a thousand times or more.

This is known as nonlinear term-frequency saturation.

Figure 34. Term frequency saturation for TF/IDF and BM25

Field-length normalization

In Field-length norm, we said that Lucene considers shorter fields to have more weight than longer fields: the frequency of a term in a field is offset by the length of the field. However, the practical scoring function treats all fields in the same way. It will treat all title fields (because they are short) as more important than all body fields (because they are long).

BM25 also considers shorter fields to have more weight than longer fields, but it considers each field separately by taking the average length of the field into account. It can distinguish between a shorttitle field and a long title field.

In Query-Time Boosting, we said that the title field has a natural boost over the bodyfield because of its length. This natural boost disappears with BM25 as differences in field length apply only within a single field.


摘自:https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html

ES BM25 TF-IDF相似度算法设置——的更多相关文章

  1. ES 相似度算法设置(续)

    Tuning BM25 One of the nice features of BM25 is that, unlike TF/IDF, it has two parameters that allo ...

  2. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  3. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  4. ES设置查询的相似度算法

    similarity Elasticsearch allows you to configure a scoring algorithm or similarity per field. The si ...

  5. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. 55.TF/IDF算法

    主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说 ...

  8. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  9. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

随机推荐

  1. dos下连接mysql,显示表结构

    C:\Windows\system32>mysql -hlocalhoset -uroot -p Enter password: ***** mysql> use ssh Database ...

  2. Android自动滚动 轮播循环的ViewPager

    主要介绍如何实现ViewPager自动播放,循环滚动的效果及使用.顺便解决ViewPager嵌套(ViewPager inside ViewPager)影响触摸滑动及ViewPager滑动速度设置问题 ...

  3. 【Web API系列教程】3.10 — 实战:处理数据(公布App到Azure App Service)

    在这最后一节中.你将把应用程序公布到Azure.在Solution Explorer中,右击项目并选择Publish. 点击Publish打开Publish Web对话框. 假设你在新建项目的时候选中 ...

  4. IOS 网络解析

    网络解析同步异步 /*------------------------get同步-------------------------------------*/ - (IBAction)GET_TB:( ...

  5. java面试笔记(2019)

    1. 堆啊,栈啊,内存溢出原因 2. Dubbo原理 3. Reids线程 4. 线程池安全 5. linux查看线程命令 6. ABA

  6. 存储过程清理N天前数据

    CREATE OR REPLACE PROCEDURE APICALL_LOG_INTERFACE_CLEAN ( CLEANDAY IN Number --天数 ) AS v_cleanDay nu ...

  7. servletResponse 请求重定向

    package response;/* * 重定向特点: * 1,浏览器会向服务器发送两次请求,意味着就有两个request\response * 2,用重定向技术,浏览器地址栏会发生变化 *  * ...

  8. Gradle 介绍

    介绍:Gradle是一种构建工具,它抛弃了基于XML的构建脚本,取而代之的是采用一种基于Groovy的内部领域特定语言.Gradle的设计理念是,所有有用的特性都由Gradle插件提供,一个Gradl ...

  9. linux find 根据条件查找文件

    版权为个人所有,欢迎转载如转载请说明出处.(东北大亨) http://www.cnblogs.com/northeastTycoon/p/5513231.html 1. 实现说明 按照某一个时间点查找 ...

  10. Docker基础原理

    前言 Docker是一个开源的软件项目,让用户程序部署在一个相对隔离的环境运行,借此在Linux操作系统上提供一层额外的抽象,以及操作系统层虚拟化的自动管理机制.需要额外指出的是,Docker并不等于 ...