【题解】CF45G Prime Problem
【题解】CF45G Prime Problem
哥德巴赫板子题?
\(\frac{n(n+1)}{2}\)若是质数,则不需要分了。
上式 若是奇数,那么拆成2和另一个数。
上式 若是偶数吗,直接\(O(n)\)枚举。
加上暴力判质数,复杂度\(O(n\sqrt{n})\)
没写,蒯别人的吧
//老写不对 交个题解看题解对不对
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<bitset>
#include<vector>
#include<map>
#include<ctime>
#include<cstdlib>
#include<set>
#include<bitset>
#include<stack>
#include<list>
#include<cmath>
using namespace std;
#define RP(t,a,b) for(register int (t)=(a),edd_=(b);t<=edd_;++t)
#define DRP(t,a,b) for(register int (t)=(a),edd_=(b);t>=edd_;--t)
#define ERP(t,a) for(int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define TMP template<class ccf>
#define lef L,R,l,mid,pos<<1
#define rgt L,R,mid+1,r,pos<<1|1
#define midd register int mid=(l+r)>>1
#define chek if(R<l||r<L)return
#define all 1,n,1
#define pushup(x) seg[(x)]=seg[(x)<<1]+seg[(x)<<1|1]
typedef long long ll;
TMP inline ccf qr(ccf k){
char c=getchar();
ccf x=0;
int q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
if(q==-1)
x=-x;
return x;
}
const int _=6005;
inline int read(){
return qr(1);
}
int n,ans[_];
void Print(){
for(int i=1;i<=n;++i)
printf("%d ",ans[i]);
puts("");
}
bool check(int x){
int q=sqrt(x);
for(int i=2;i<=q;++i)
if(!(x%i))return 0;
return 1;
}
int main(){
n=read();
int m=(n+1)*n/2;
for(int i=1;i<=n;++i)ans[i]=1;
if(check(m)){Print();return 0;}
if(m&1&&!check(m-2))ans[3]=3,m-=3;
for(int i=2;i<=n;++i)
if(check(i)&&check(m-i))
{ans[i]=2;break;}
Print();
return 0;
}
【题解】CF45G Prime Problem的更多相关文章
- [CF45G]Prime Problem
题目大意:将$1$到$n(1<n\leqslant6000)$分成若干组数,要求每组数的和均为质数,若存在一种分配方式,输出每个数所在的组的编号,有多组解输出任意一组解,若不存在,输出$-1$ ...
- CF45G Prime Problem 构造+数论
正解:构造+数论 解题报告: 传送门! maya这题好神仙啊我jio得,,,反正我当初听的时候是没有太懂的,,, 首先这题你要知道一些必要的数学姿势 比如哥德巴赫猜想巴拉巴拉的 然后直接讲题趴QAQ ...
- PAT甲题题解-1059. Prime Factors (25)-素数筛选法
用素数筛选法即可. 范围long int,其实大小范围和int一样,一开始以为是指long long,想这就麻烦了该怎么弄. 而现在其实就是int的范围,那难度档次就不一样了,瞬间变成水题一枚,因为i ...
- 【题解】Tree-String Problem Codeforces 291E AC自动机
Prelude 传送到Codeforces:(/ω\)--- (/ω•\) Solution 很水的一道题. 对查询的串建出来AC自动机,然后树上随便跑跑就行了. 为什么要写这篇题解呢? 我第一眼看到 ...
- P1832题解 A+B Problem(再升级)
万能的打表 既然说到素数,必须先打素数表筛出素数, 每个素数可以无限取,这就是完全背包了. 这次打个质数表: bool b[1001]={1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,1 ...
- 题解:T103342 Problem A. 最近公共祖先
题目链接 题目大意 求每个点对的lca深度的和 以每一层分析,得出通式 由于1e9的数据范围要化简表达式得到O(能过) 瞎搞后就是2^(2n+2)-(4n+2)*2^n-2 code: #includ ...
- CF45G
考虑哥德巴赫猜想:一个偶数可以被拆分两个质数. 所以我们考虑如果不是偶数的话,我们拆分成\((2,m-2)\)或者\((3,del(m - 3))\) 如果是偶数的话\(del(m)\),我们直接枚举 ...
- 暑假训练round 3 题解
今天做题运气出奇的好,除了几处小错误调试之后忘记改掉了……最后还AK了……虽然题目不难,学长也说是福利局,但是对个人的鼓励作用还是挺大的……至此暑假训练就结束了,也算没有遗憾……. 题解如下: Pro ...
- [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
随机推荐
- Light oj 1125 - Divisible Group Sums (dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1125 题意: 给你n个数,q次询问,每次询问问你取其中m个数是d的整数倍的方案 ...
- (入门SpringBoot)SpringBoot发送邮件(十一)
SpringBoot配置邮件服务: 1.引入jar <!-- 邮件 --> <dependency> <groupId>org.springframework ...
- 基于WPF系统框架设计(10)-分页控件设计
背景 最近要求项目组成员开发一个通用的分页组件,要求是这个组件简单易用,通用性,兼容现有框架MVVM模式,可是最后给我提交的成果勉强能够用,却欠少灵活性和框架兼容性. 设计的基本思想 传入数据源,总页 ...
- PHP实现RabbitMQ的Publish/Subscribe
<?php /** * Created by PhpStorm. * User: 豆腐居士 * Date: 2018/5/30 * Time: 上午11:01 */ class AqiTask ...
- 使用Python来编写一个简单的感知机
来表示.第二个元素是表示期望输出的值. 这个数组定义例如以下: training_data = [ (array([0,0,1]), 0), (array([0,1,1]), 1), (arra ...
- 数据结构之---C语言实现图的数组(邻接矩阵)存储表示
//图的数组(邻接矩阵)存储表示 #include <stdio.h> #include <stdlib.h> #define MAX_VEX_NUM 50 typedef c ...
- Android设计中的尺寸问题
Android把屏幕大小分成四种:small, normal, large, xlarge; 屏幕密度分成:low(ldpi), medium(mdpi), high(hdpi), extra hig ...
- 出现“Windows资源管理器已停止工作”错误
出现"Windows资源管理器已停止工作"错误 什么是资源管理器呢,explorer.exe进程的作用就是让我们管理计算机中的资源! 今天开电脑的时候就一直提示windows资源管 ...
- Node.js学习笔记(4)——除了HTTP(服务器和客户端)部分
很多node入门的书里面都会在介绍node特性的时候说:单线程,异步式I/O,事件驱动. Node不是一门语言,它是运行在服务器端的开发平台,官方指定语言为javascript. 阻塞和线程: 线程在 ...
- setTimeout()基础/setInterval()基础
JavaScript提供定时执行代码的功能,叫做定时器(timer),主要由setTimeout()和setInterval()这两个函数来完成.它们向任务队列添加定时任务.初始接触它的人都觉得好简单 ...