【BZOJ2510】弱题 期望DP+循环矩阵乘法
【BZOJ2510】弱题
Description
Input
Output
Sample Input
3 0
Sample Output
1.333
HINT
【样例说明】
第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。
第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。
【数据规模与约定】
对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;
对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;
对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;
对于40%的数据,M ≤ 1000, K ≤ 1000;
对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。
题解:一开始too naive,以为同样用一个期望DP的黑科技就能过(k=min(k,5000))~
发现正解又是矩阵乘法,但是矩乘不是n^3的吗?本题有特殊性质。
我们的DP方程长这样:f[i][j]=f[i的上一个][j-1]/m+f[i][j-1]*(m-1)/m
所以我们的转移矩阵的每一行都是循环相同的,将转移矩阵自乘若干次后,每一行仍然是循环相同的,所以我们的矩阵实际上只需要维护一行,那么转移一次的代价自然就是O(n^2)的。
那么具体实现呢?其实非常简单,直接c[i+j]+=a[i]*b[j]。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,m,k;
struct M
{
double v[1010];
M (){memset(v,0,sizeof(v));}
double& operator [] (int x) {return v[x];}
M operator * (M a)
{
M ret;
for(int i=0;i<n;i++) for(int j=0;j<n;j++) ret[(i+j)%n]+=v[i]*a[j];
return ret;
}
};
M ans,x;
void pm(int y)
{
while(y)
{
if(y&1) ans=ans*x;
x=x*x,y>>=1;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
int i;
for(i=0;i<n;i++) scanf("%lf",&ans[i]);
x[0]=(double)(m-1)/m,x[1]=(double)1/m;
pm(k);
for(i=0;i<n;i++) printf("%.3lf\n",ans[i]);
return 0;
}
【BZOJ2510】弱题 期望DP+循环矩阵乘法的更多相关文章
- bzoj 2510: 弱题 概率期望dp+循环矩阵
题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...
- 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...
- [bzoj2510]弱题 (循环矩阵优化dp)
Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个 ...
- 2018.09.27 bzoj2510: 弱题(概率dp+循环矩阵优化)
传送门 简单概率dp. 显然每次转移的式子可以用一个矩阵表示出来: 这个是循环矩阵. 因此只用维护第一行快速幂一波就行了. 代码: #include<bits/stdc++.h> #def ...
- Bzoj2510 弱题(矩阵快速幂)
题面(权限题) 题解 一道概率\(dp\),可以设\(f[i][j]\)表示第\(i\)次操作后,标号为\(j\)的小球的期望个数,那么有: \[ \begin{aligned} &f[i][ ...
- BZOJ2510: 弱题
求k时刻一个标号转移到各位置的概率,最后枚举每个标号加权求期望.可以发现转移矩阵是循环矩阵,因此乘法是n^2的.另外这个乘法是圆周卷积的形式,然后就作死写了发fft,发现精度升天了= = #inclu ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- UVA - 12183 :Top Secret(N^2的循环矩阵乘法)
pro:N个数排成一圈.一次操作为,每个位置的数+=L*左+R*右,保留x为整数. 问S轮操作后每个位置的值. N<=1000,S<=2^30,x<=9 . sol:不难想到矩阵乘法 ...
随机推荐
- Z划分空间
/* https://blog.csdn.net/fastkeeper/article/details/38905249 https://max.book118.com/html/2017/1007/ ...
- UVA 524 素数环 【dfs/回溯法】
Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers ...
- VS如何反汇编
1. 打开反汇编窗口:调试模式下,按Ctrl+F11.2. 术语: 2.1 ESP(Extended Stack Pointer): 堆栈指针,寄存器存放当前线程的栈顶指针: i.e: move eb ...
- luogu P3092 [USACO13NOV]没有找零No Change
题目描述 Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 ...
- 某考试T2 frog
题目背景 无 题目描述 数轴上有 n 只青蛙,分别编号为 1 到 n.青蛙 i 的初始位置的坐标为 xi. 它们准备进行如下形式的移动:每轮包括 m 次跳跃,第 i 次跳跃由青蛙 ai(1 < ...
- Concurrency(Locking, Blocking and Row Versioning)
https://www.simple-talk.com/sql/t-sql-programming/row-versioning-concurrency-in-sql-server/?utm_sour ...
- 2016.8.22 Axure两级下拉框联动的实现
刚学Axure,有些很简单的东西都要弄很久,但是弄出来的总归是很开心的. 参考来自:实现省市县下拉框的三级联动 http://www.woshipm.com/rp/348795.html/commen ...
- Oracle内存管理(之五)
[深入解析--eygle]学习笔记 1.4. 2其它内存组件 Large Pool-大池是SGA的一个可选组件,通经常使用于共享server模式(MTS). 并行计算或 RMAN的备份恢复等操作. J ...
- 报错: Access restriction: The type JPEGImageEncoder is not accessible due to restriction on required library
报错: Access restriction:The type JPEGCodec is not accessible due to restriction on required library C ...
- 【Python】学习笔记十五:循环对象
循环对象 所谓的循环对象,包含有一个next()方法(python3中为__next__() ),这个方法的目的就是进行到下一个结果,而在结束一系列结果之后,举出StopIteration错误 当一个 ...