【BZOJ2510】弱题 期望DP+循环矩阵乘法
【BZOJ2510】弱题
Description
Input
Output
Sample Input
3 0
Sample Output
1.333
HINT
【样例说明】
第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。
第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。
【数据规模与约定】
对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;
对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;
对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;
对于40%的数据,M ≤ 1000, K ≤ 1000;
对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。
题解:一开始too naive,以为同样用一个期望DP的黑科技就能过(k=min(k,5000))~
发现正解又是矩阵乘法,但是矩乘不是n^3的吗?本题有特殊性质。
我们的DP方程长这样:f[i][j]=f[i的上一个][j-1]/m+f[i][j-1]*(m-1)/m
所以我们的转移矩阵的每一行都是循环相同的,将转移矩阵自乘若干次后,每一行仍然是循环相同的,所以我们的矩阵实际上只需要维护一行,那么转移一次的代价自然就是O(n^2)的。
那么具体实现呢?其实非常简单,直接c[i+j]+=a[i]*b[j]。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,m,k;
struct M
{
double v[1010];
M (){memset(v,0,sizeof(v));}
double& operator [] (int x) {return v[x];}
M operator * (M a)
{
M ret;
for(int i=0;i<n;i++) for(int j=0;j<n;j++) ret[(i+j)%n]+=v[i]*a[j];
return ret;
}
};
M ans,x;
void pm(int y)
{
while(y)
{
if(y&1) ans=ans*x;
x=x*x,y>>=1;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
int i;
for(i=0;i<n;i++) scanf("%lf",&ans[i]);
x[0]=(double)(m-1)/m,x[1]=(double)1/m;
pm(k);
for(i=0;i<n;i++) printf("%.3lf\n",ans[i]);
return 0;
}
【BZOJ2510】弱题 期望DP+循环矩阵乘法的更多相关文章
- bzoj 2510: 弱题 概率期望dp+循环矩阵
题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...
- 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...
- [bzoj2510]弱题 (循环矩阵优化dp)
Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个 ...
- 2018.09.27 bzoj2510: 弱题(概率dp+循环矩阵优化)
传送门 简单概率dp. 显然每次转移的式子可以用一个矩阵表示出来: 这个是循环矩阵. 因此只用维护第一行快速幂一波就行了. 代码: #include<bits/stdc++.h> #def ...
- Bzoj2510 弱题(矩阵快速幂)
题面(权限题) 题解 一道概率\(dp\),可以设\(f[i][j]\)表示第\(i\)次操作后,标号为\(j\)的小球的期望个数,那么有: \[ \begin{aligned} &f[i][ ...
- BZOJ2510: 弱题
求k时刻一个标号转移到各位置的概率,最后枚举每个标号加权求期望.可以发现转移矩阵是循环矩阵,因此乘法是n^2的.另外这个乘法是圆周卷积的形式,然后就作死写了发fft,发现精度升天了= = #inclu ...
- bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...
- UVA - 12183 :Top Secret(N^2的循环矩阵乘法)
pro:N个数排成一圈.一次操作为,每个位置的数+=L*左+R*右,保留x为整数. 问S轮操作后每个位置的值. N<=1000,S<=2^30,x<=9 . sol:不难想到矩阵乘法 ...
随机推荐
- springBoot AOP切面编程
AOP 为 Aspect Oriented Programming 的缩写,意为 面向切面编程.AOP 为spring 中的一个重要内容,它是通过对既有程序定义一个切入点,然后在其前后切入不同的执行内 ...
- 交换机的工作模式:IVL和SVL
IVL(independent vlan learning)每个vlan建一个表,看起来好像有很多表,其实这里所说的表是指逻辑上的表,实际上在交换机中还是只有一个表.如果将VID相同的记 录都提取出来 ...
- fetch API 简单解读
http://f2e.souche.com/blog/fetch-api-jie-du/?utm_source=tuicool&utm_medium=referral 在我们日常的前端开发中, ...
- Ansible进阶之企业级应用
1.环境 cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 ...
- [TJOI2014] Alice and Bob
非常好的一道思维性题目,想了很久才想出来qwq(我好笨啊) 考虑a[]数组有什么用,首先可以yy出一些性质 (设num[i]为原来第i个位置的数是什么 , 因为题目说至少有一个排列可以满足a[],所以 ...
- 【转】java8中谨慎使用实数作为HashMap的key!
java8中谨慎使用实数作为HashMap的key! java8中一个hashCode()函数引发的血案java8中一个hashCode()函数引发的血案1.起因2.实数的hashCode()3.总结 ...
- Storyboards Tutorial 01
Storyboarding 是在ios 5时候引进入的一个非常出色的特性.节省了为app创建user interfaces的时间.
- EasyMvc入门教程-基本控件说明(3)时间线
我们有时候经常看到如下的页面: 或者快递物流信息图标,那么利用EasyMvc如何实现呢?很简单,看下面的例子: @{ var data=new List<TimeLineItem>() { ...
- 网络库libevent、libev、libuv对比
Libevent.libev.libuv三个网络库,都是c语言实现的异步事件库Asynchronousevent library). 异步事件库本质上是提供异步事件通知(Asynchronous Ev ...
- 2017.2.13 开涛shiro教程-第十二章-与Spring集成(一)配置文件详解
原博客地址:http://jinnianshilongnian.iteye.com/blog/2018398 根据下载的pdf学习. 第十二章-与Spring集成(一)配置文件详解 1.pom.xml ...