前言:對於這週的咕咕咕表示好像沒什麼好表示的,完全沒有靈感a......寫東西真的好難啊......於是又玩了半天鬼泣4???還挺好玩的

來源:題解


题目背景

缩点+DP

题目描述

给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

输入输出格式

输入格式:

第一行,n,m

第二行,n个整数,依次代表点权

第三至m+2行,每行两个整数u,v,表示u->v有一条有向边

输出格式:

共一行,最大的点权之和。

输入输出样例

输入样例#1:

2 2
1 1
1 2
2 1
输出样例#1:

2

说明

n<=10^4,m<=10^5,点权<=1000

算法:Tarjan缩点+DAGdp


題目中給出了算法,然而第一篇題解用的是拓撲排序,所以我就照著抄了......

本來寒假學過tarjan的,然而忘記了,這次複習一開始最看不懂的是low數組:

low數組表示“從i點出發能訪問到的最早進入時間”,事實上是如果從i點出發能向上走到某個點說明這裡存在了一個環,從i發出了一條後向邊,

等dfs完這個點的分支的時候,找到的環就會是最大的了。

縮點就是每個強連通分量當做一個點,然後重新建圖

#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int maxn=+;
int n,m,cnt,tim,top,s;
int p[maxn],head[maxn],sd[maxn],dfn[maxn],low[maxn];
//sd為這個點在哪個強連通分量中,dfs時間戳,
//low棧中以u為父結點的子樹能連接到棧中最上端的點的dfs值
//也就是從i點出發能訪問到的最早進入時間
//p為點權,in為入度
int stac[maxn],vis[maxn];//栈只为了表示此时是否有父子关系
int h[maxn],in[maxn],dist[maxn];
struct node{
int u,v,next;
}e[maxn*],ed[maxn*];
void add(int u,int v)
{
e[++cnt].u=u;
e[cnt].v=v;
e[cnt].next=head[u];
head[u]=cnt;
}
void tarjan(int x)//求強連通分量,每個強連通分量就是一個新點
{
low[x]=dfn[x]=++tim;
stac[++top]=x;vis[x]=; for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(!dfn[v]){
tarjan(v);
low[x]=min(low[x],low[v]);
}
else if(vis[v]){
low[x]=min(low[x],low[v]);
}
}
if(dfn[x]==low[x]){
int y;
while(y=stac[top--]){
sd[y]=x;
vis[y]=;
if(x==y)break;
p[x]+=p[y];
}
}
}
//縮成了DAG圖,所以可以拓撲排序了
//可以直接dp
int topo()
{
queue<int>q;
int tot=;
for(int i=;i<=n;i++)
if(sd[i]==i&&!in[i]){//自己是這個強連通分量的根
q.push(i);
dist[i]=p[i];
}
while(!q.empty()){
int k=q.front();q.pop();
for(int i=h[k];i;i=ed[i].next){
int v=ed[i].v;
dist[v]=max(dist[v],dist[k]+p[v]);
in[v]--;
if(in[v]==)q.push(v);
}
}
int ans=;
for(int i=;i<=n;i++)
ans=max(ans,dist[i]);
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&p[i]);
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
for(int i=;i<=m;i++){//重新建圖,枚舉每一條原邊,如果不在一個強連通分量里就連上
int x=sd[e[i].u],y=sd[e[i].v];
if(x!=y){
ed[++s].next=h[x];
ed[s].v=y;
ed[s].u=x;
h[x]=s;
in[y]++;
}
}
printf("%d",topo());
}

[模板](luogu P3387)縮點的更多相关文章

  1. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

  2. [題解](縮點)luogu_P2341受歡迎的牛

    對於每個強聯通分量,這些牛一定都互相喜歡,所以縮點(我也不知道怎麼想到的) 接下來就是統計答案,最後縮成了一個DAG圖,如果這個點是明星的話,其他每個點一定直接或間接的鏈接這個點 也就是說其他點一定有 ...

  3. 解题报告+板子:luogu P3387 【模板】缩点

    题目链接:P3387 [模板]缩点 缩点板子,所谓\(dp\)就是拓扑排序(毕竟可以重走边),像\(SPFA\)一样松弛就好,就是重边极其烦人,还加了排序(绝对自己想的,然鹅拓扑的思路不是). 下面上 ...

  4. luogu P3387 【模板】缩点

    题目 好久没法博客了 这次就水个板子题目吧 tarjan缩点之后重新建图 而且边权应该都是正的(要不我怎么能这么轻松水过去) 在新图上记忆化一下就好了 f[i] 表示 开头选i这个点 的 路径最大值 ...

  5. luogu P3387 【模板】缩点_拓扑排序

    还是很好些的. Code: #include <stack> #include <cstdio> #include <algorithm> #include < ...

  6. LUOGU P3387 【模板】缩点 (缩点+DAG dp)

    解题思路 缩点后按拓扑排序跑一个dp. #include<iostream> #include<cstdio> #include<cstring> #include ...

  7. 高精度模板 Luogu P1932 A+B & A-B & A*B & A/B Problem

    P1932 A+B & A-B & A*B & A/B Problem 题目背景 这个题目很新颖吧!!! 题目描述 求A.B的和差积商余! 输入输出格式 输入格式: 两个数两行 ...

  8. 基数排序模板[luogu 1177]

    #include<bits/stdc++.h> #define LL long long using namespace std; ,bas=; ]; LL idx(LL k,LL w) ...

  9. 平面最近点对模板[luogu P1429]

    %:pragma GCC optimize() #include<bits/stdc++.h> #define DB double #define m (((l)+(r))>> ...

随机推荐

  1. PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/redis.so' - /usr/lib64/php/modules/redis.so: undefined symbol: igbinary_serialize in Unknown on line 0

    网上找到两种解决方法, 1.先删除php-pecl-redis,再用pecl install redis 2.安装php-igbinary模块,不过我安装时包冲突了,没有安装成功,所以用了第一种方法

  2. Redis学习笔记(1):Redis的说明与安装

    Redis学习笔记(1):Redis说明的安装 说明 什么是Redis REmote DIctionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-va ...

  3. bzoj4670: 佛罗里达

    这题直接随机化+贪心就可以爆踩过去,我加了个退火增加容错率而已....其实你随机的次数够多根本不需要... 然后来自肉丝哥哥的正经做法: 先钦定D(A)>D(B),那么可以枚举D(A),然后再去 ...

  4. HDU2896 病毒侵袭 —— AC自动机

    题目链接:https://vjudge.net/problem/HDU-2896 病毒侵袭 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit ...

  5. poj2513 Colored Sticks —— 字典树 + 并查集 + 欧拉回路

    题目链接:http://poj.org/problem?id=2513 题解:通过这题了解了字典树.用字典树存储颜色,并给颜色编上序号.这题为典型的欧拉回路问题:将每种颜色当成一个点.首先通过并查集判 ...

  6. 近期测试BUG总结

    前些日子上线了新版的app,在上线后发现了几个重大的bug,在此总结,在以后的测试工作中需要额外的关注. 需求流程bug 页面刷新bug 标签栏刷新bug 第一个bug出现的原因是产品需求与运营实际操 ...

  7. YII的RBAC

    转自:http://www.cppblog.com/guojingjia2006/archive/2013/01/15/197298.html 开始准备 Yii提供了强大的配置机制和很多现成的类库.在 ...

  8. css中块元素和行内元素区别

    行内元素特点 1.和其他元素都在一行上: 2.元素的高度.宽度.行高及顶部和底部边距不可设置: 3.元素的宽度就是它包含的文字或图片的宽度,不可改变. 块元素特点 1.每个块级元素都从新的一行开始,并 ...

  9. 深度学习网络结构中超参数momentum了解

    训练网络时,通常先对网络的初始权值按照某种分布进行初始化,如:高斯分布.初始化权值操作对最终网络的性能影响比较大,合适的网络初始权值能够使得损失函数在训练过程中的收敛速度更快,从而获得更好的优化结果. ...

  10. 文件的打开函数第一类--fopen()

        fopen函数用来打开一个文件,其调用的一般形式为: 文件指针名=fopen(文件名,使用文件方式); 其中, “文件指针名”必须是被说明为FILE 类型的指针变量: “文件名”是被打开文件的 ...