#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//???????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
while(scanf("%I64d",&n)!=EOF)
{
tol=;
findfac(n);
for(int i=;i<tol;i++)printf("%I64d ",factor[i]);
printf("\n");
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
return ;
}

大素数判断和素因子分解(miller-rabin,Pollard_rho算法)的更多相关文章

  1. 【转】大素数判断和素因子分解【miller-rabin和Pollard_rho算法】

    集训队有人提到这个算法,就学习一下,如果用到可以直接贴模板,例题:POJ 1811 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646 ...

  2. 大素数判断和素因子分解(miller-rabin,Pollard_rho算法) 玄学快

    大数因数分解Pollard_rho 算法 复杂度o^(1/4) #include <iostream> #include <cstdio> #include <algor ...

  3. POJ 1811 大素数判断

    数据范围很大,用米勒罗宾测试和Pollard_Rho法可以分解大数. 模板在代码中 O.O #include <iostream> #include <cstdio> #inc ...

  4. HDU 4910 Problem about GCD 找规律+大素数判断+分解因子

    Problem about GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. 大素数判断(miller-Rabin测试)

    题目:PolandBall and Hypothesis A. PolandBall and Hypothesis time limit per test 2 seconds memory limit ...

  6. Pollard_rho算法进行质因素分解

    Pollard_rho算法进行质因素分解要依赖于Miller_Rabbin算法判断大素数,没有学过的可以看一下,也可以当成模板来用 讲一下Pollard_rho算法思想: 求n的质因子的基本过程是,先 ...

  7. Miller_Rabbin算法判断大素数,Pollard_rho算法进行质因素分解

    Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说 ...

  8. (Miller Rabin算法)判断一个数是否为素数

    1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这 ...

  9. Miller Rabin 大素数测试

    PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...

随机推荐

  1. Java统计用户年/月/周/日网站访问量

    一:准备工作,引入相关依赖: 二:运行效果图: 下一次访问 三:具体代码如下  (1):CountObjectInfo.java package cn.csrc.base.count; import ...

  2. 外网访问FTP服务,解决只能以POST模式访问Filezilla的问题

    在内网可以正常使用PASV,但是在外网不行,导致数据传输慢或者根本连接不了,在FlashFXP中通过日志,找到了解决方法解决方法1.在Filezilla——Edit——Settings——Passiv ...

  3. Luogu [P2708] 硬币翻转

    硬币翻转 题目详见:硬币翻转 这道题是一道简单的模拟(其实洛谷标签上说这道题是搜索???),我们只需要每一次从前往后找相同的硬币,直到找到不同的硬币n,然后将找到的前n-1个相同的硬币翻过来,每翻一次 ...

  4. python Scraping

    http://docs.python-guide.org/en/latest/scenarios/scrape/

  5. 正则python正则,提取\t\n里面的大写英文字母

    ss = '['\r\n\t\t\t\t\t\t\t\t\t', '\r\n\t\t\t\t\t\t\t', '\r\n\t\t\t\t\t\t\t\t\tCMA CGM JACQUES JOSEPH ...

  6. 卸载Redhat 7自带的yum,安装并使用网易163源

    由于redhat的yum在线更新是收费的,如果没有注册的话不能使用,如果要使用,需将redhat的yum卸载后,安装CentOS yum工具,再配置其他源,以下为详细过程:删除redhat原有的yum ...

  7. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  8. Linux下Oracle JDK替换Open JDK

    Oracle的产品需要Oracle JDK,但是Linux发行版附带的都是开源的Open JDK,这里给出的方法是在不删除原有Open JDK的情况下,安装Oracle JDK 环境 系统:CentO ...

  9. adaboost python实现小样例

    元算法是对其他算法进行组合的一种方式.单层决策树实际上是一个单节点的决策树.adaboost优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整缺点:对离群点敏感适用数据类型:数值型和标称 ...

  10. 倍增 - 强制在线的LCA

    LCA 描述 给一棵有根树,以及一些询问,每次询问树上的 2 个节点 A.B,求它们的最近公共祖先. !强制在线! 输入 第一行一个整数 N. 接下来 N 个数,第 i 个数 F i 表示 i 的父亲 ...