关于GPU你必须知道的基本知识
图形处理单元(或简称GPU)会负责处理从PC内部传送到所连接显示器的所有内容,无论你在玩游戏、编辑视频或只是盯着桌面的壁纸,所有显示器中显示的图像都是由GPU进行渲染的。
对普通用户来说,实际上不需要独立显卡就可以向显示器「提供」内容。像笔记本电脑或平板用户,通常CPU芯片都会集成GPU内核,也就是大家熟称的「核显」,这样就可以为对显示要求不高的低功耗设备提供更好的性价比。
正因如此,部分笔记本电脑、平板电脑和某些PC用户来说,要想将其图形处理器升级到更高级别也很困难,甚至不太可能。这就会导致游戏(和视频编辑等)性能不佳,只能将图形质量设置降低才能工作。对此类用户而言,只有在主板支持和空闲空间足够的情况下,添加新显卡才能够把(游戏)显示体验提高到一个新的水平。
CPU vs GPU
既然CPU已经提供显示核心了,如果我们已有一颗强大CPU,为什么还需要单独的GPU呢?简单地说,就是GPU的数字计算对依赖于它的游戏引擎和(像视频编辑这样的)密集型应用程序来说更为强劲,位于GPU板上的大量核心可以在单位时间点处理所有此类进程。
虽然CPU和GPU都是以硅为基础的微型处理器,不过从本质上来说,两者的部署角色却是完全不同的。CPU是PC的大脑,用于处理各种复杂的任务,GPU并不能有效地执行。而比特币工厂依赖于他们受信任的GPU(被称为GPGPU–通用图形处理单元)来挖矿而不用CPU。
CPU和GPU就像人类的大脑和肌肉,前者能够处理大量不同类型的计算,而GPU的任务则是负责渲染图形和将所有可用核心聚焦于具体任务。当在单个任务上需要大量复杂图形和几何运算时,GPU会投入相应工作。
GPU厂商
目前市场上占主导地位的两大GPU厂商是AMD和Nvidia,AMD的前身就是大名鼎鼎的ATI,其Radeon品牌早在1985年就已发布,而Nvidia在1999年才发布了其首款GPU产品。AMD于2006年对ATI进行了收购,目前在两个不同的领域同Nvidia和Intel进行竞争。实际上在选购GPU产品时Nvidia和AMD并没有太大区别,完全取决于用户的个人喜好。
继Nvidia发布的GTX 10系列推出一堆新产品后,AMD也以提供更实惠的价格与其竞争,并预计在不久的将来就会推出自己的高端图形解决方案。通常情况下,此类科技厂商都会在高端产品上并行竞争和一较高下,此外Intel也在芯片中不断推进自己的图形解决方案,但用户通常还是会选择A卡或N卡。
GPU工作
GPU目前已成为PC内部最强大的组件之一,其性能大部分都来自于VRAM。由于独立显卡使用的显示内存独立于计算机内存,这些存储器模块允许快速存储和接收数据,而不必再通过CPU路由到主板上插的内存。
虽然显卡内存与计算机内存相似,但却完全不同,例如:支持DDR4内存的主板也可能会支持GDDR5 RAM的显卡。显卡上的VRAM用于在卡上快速存储和访问数据,以及为显示器缓冲渲染帧。其还有助于降低影响屏幕上近似数据的「锯齿状边缘」以实现抗锯齿,使图像看起来更平滑。
GPU散热
要利用好GPU的原始设计效能必需有大量供电,大量用电就意味着大量发热。显卡(或处理器)产生的热量是以热设计功耗(或简称TDP)和瓦特为单位测量的。但商家对产品的标称并不是直接所需的功耗值,例如新的GTX 1080标称为180W TDP等级,但这并不意味着它需要180W的功率。
之所以提醒大家关心这个值是因为,具有较高TDP的GPU用到有限空气流动的紧凑空间中可能会导致散热问题。特别是对GPU超频的用户来说,需要有足够的冷却手段来处理增加的热量,才能让其稳定运行。
GPU术语
架构:GPU基于的平台(或技术)。一般由GPU厂商进行定义,如AMD 的Polaris架构。
显存带宽:它决定了GPU如何有效地利用可用的VRAM。显卡可以使用GDDR5内存,但如果没有有效地利用带宽仍然会有瓶颈。
纹理填充率:指GPU在单位时间内所能处理的纹理贴图的数量,单位是MTexels/S,由内核时钟乘以可用纹理映射单元(TMU)确定。
内核/处理器:显卡上可用的并行内核(或处理器)数。
核心时钟:与CPU的时钟速率类似,通常该值越高GPU则能够更快地工作。
SLI/CrossFire:SLI和CrossFire分别是Nvidia和AMD使用的技术,它们允许用户安装多块GPU卡并协同工作。
显卡解决图形问题和其他任务的众多核心都是专门设计的,强大的显卡和GPU可以为游戏提供更高的保真度和分辨率,虽然它比CPU更强大,但实际只能用于特定的应用程序。
关于GPU你必须知道的基本知识的更多相关文章
- OpenStack 企业私有云的若干需求(1):Nova 虚机支持 GPU
本系列会介绍OpenStack 企业私有云的几个需求: 自动扩展(Auto-scaling)支持 多租户和租户隔离 (multi-tenancy and tenancy isolation) 混合云( ...
- GPU 编程入门到精通(五)之 GPU 程序优化进阶
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙 ...
- GPU 编程入门到精通(四)之 GPU 程序优化
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识,鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程.有志同道合的小伙伴 ...
- GPU 编程入门到精通(三)之 第一个 GPU 程序
博主因为工作其中的须要.開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识,鉴于之前没有接触过 GPU 编程,因此在这里特地学习一下 GPU 上面的编程.有志同道合的小伙伴 ...
- cuda by example【读书笔记1】
cuda 1. 以前用OpenGL和DirectX API简介操作GPU,必须了解图形学的知识,直接操作GPU要考虑并发,原子操作等等,cuda架构为此专门设计.满足浮点运算,用裁剪后的指令集执行通用 ...
- [转]OPENCV3.3+CUDA9.0 环境搭建若干错误总结
编译OpenCV设计启用OpenGL三维可视化支持和启用GPU CUDA并行加速处理的基本知识: 1.从2.4.2版本开始,OpenCV在可视化窗口中支持OpenGL,这就意味着在OpenCV中可以轻 ...
- 深度学习论文翻译解析(十九):Searching for MobileNetV3
论文标题:Searching for MobileNetV3 论文作者:Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Che ...
- Theano2.1.12-基础知识之使用GPU
来自:http://deeplearning.net/software/theano/tutorial/using_gpu.html using the GPU 想要看GPU的介绍性的讨论和对密集并行 ...
- GPU知识了解
前言 今天在使用阿里云的时候,无意间看到了有GPU服务器,于是对它做了一个大概的了解. 概念 GPU是Graphics Processing Unit的缩写,翻译成中文就是图形处理器.是一种专门在个人 ...
随机推荐
- Java Web(2)-jQuery上
一.jQuery初体验 使用jQuery给一个按钮绑定单击事件 <!DOCTYPE html> <html lang="en"> <head> ...
- 台账建立和sqlite数据库的数据导入和导入问题
principle platform command starts with "."; whiel sql command doesn't starts with ". ...
- Linux重定向用法详解
大家好,我是良许. 相信大家平时都会有需要复制粘贴数据的时候,如果是打开文件进行复制粘贴,就不可避免的需要较多的鼠标与键盘的操作,就会比较繁琐.那么有没有可以省掉这些繁琐操作的复制粘贴的方法呢? 答案 ...
- 02_HTML03
学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"软件测试"获取视频和教程资料! b站在线视频 HTML ...
- Java语言概述_章节练习题及面试
学于尚硅谷开源课程 宋洪康老师主讲 感恩 尚硅谷官网:http://www.atguigu.com 尚硅谷b站:https://space.bilibili.com/302417610?from=se ...
- org.springframework.beans.factory.UnsatisfiedDependencyException异常
注解配置不完整 如Service实现类没有加 * @Service * @Transactional
- Sqlite3 实现学生信息增删改查
import sqlite3 conn = sqlite3.connect('studentsdb.db') # 连接数据库 cursor = conn.cursor( ) # 创建数据表 def c ...
- Python按值传递参数和按引用传递参数
Python按值传递参数和按引用传递参数: 按值传递参数: 使用一个变量的值(数字,字符串),放到实参的位置上 注:传递过去的是变量的副本,无论副本在函数中怎么变,变量的值都不变 传递常量: # 传递 ...
- 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点
容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...
- Python PIL方式打开的图片判断维度
1. PIL方式打开的图片判断维度 好久没更新啦,哈哈哈~~!今天跟宝宝们分享一篇如何判断灰度图像和彩色图像维度的方法.我们在读取灰度图像和彩色图像时,发现读取出来的图片维度不同,当我们要做后续 ...