P2261 [CQOI2007]余数求和 【整除分块】
一、题面
二、分析
参考文章:click here
对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围。
假设$ n = 10 ,k = 5 $
$$ i : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \\ \lfloor \frac{k}{i} \rfloor : 5 \ 2 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 $$
我们推导出假设$ L = i $,那么,对应的 $ \lfloor \frac{k}{i} \rfloor $ 相等的最右边界为 $ R = \lfloor \frac{k}{ \lfloor \frac{k}{i} \rfloor } \rfloor $.(具体证明可以看参考文章。)
需要注意的细节是
1 $R$可能超过$n$,所以要限制一下。
2 一定要用$long long$。
三、AC代码
1 #include <bits/stdc++.h>
2
3 using namespace std;
4 typedef long long ll;
5
6 int main()
7 {
8 //freopen("input.txt", "r", stdin);
9 ll n, k;
10 while(scanf("%lld%lld", &n, &k) != EOF)
11 {
12 ll ans = n * k;
13 ll L, R;
14 for(L = 1; L <= n; L = R + 1)
15 {
16 ll res = k/L;
17 if(res)
18 {
19 // 必须加min,因为k/res可能超过n,例如 k = 10, n = 6
20 R = min(k/res, n);
21 }
22 else
23 R = n;
24 ans -= res * (R - L + 1) * (R + L) / 2;
25 }
26 printf("%lld\n", ans);
27 }
28 return 0;
29 }
P2261 [CQOI2007]余数求和 【整除分块】的更多相关文章
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- [CQOI2007] 余数求和 - 整除分块
\(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i} ...
- LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- Bzoj 1257 [CQOI2007]余数之和 (整除分块)
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
随机推荐
- C++ part3
函数和const references: C++中const用于函数重载 有些情况可以重载,有些不行,具体看↑. 隐式类型转换 references: nowcoder 对于内置类型,低精度的变量给高 ...
- codevs1068乌龟棋-四维DP,五维如何缩减一维
我们从起点x开始暴力枚举所有决策 于是可以得到如下转移 void dfs(int x,int A,int B,int C,int D,int y) { if (x==n) {ans=max(ans,y ...
- React Hooks: useEffect All In One
React Hooks: useEffect All In One useEffect https://reactjs.org/docs/hooks-effect.html https://react ...
- h5 localStorage和sessionStorage浏览器数据缓存
sessionStorage 会话数据,localStorage 没有过期时间 两个的API基本都一样的 基本的使用 // 保存一个数据 sessionStorage.setItem('key', ' ...
- dart 匹配基本map
var map_start = RegExp(r'^\s*\{\s*'); var map_end = RegExp(r'^\}\s*(,)?\s*'); var hasComma = true; M ...
- C++算法代码——字符串p型编码
题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1681 题目描述 给定一个完全由数字字符('0','1','2',-,'9')构成的字 ...
- 04_Mysql配置文件(重要参数)
Mysql配置文件(重要参数) mysql配置文件的内容 打开my.ini文件(ProgramData默认隐藏,需取消隐藏) 绿色文字为注解,并不会被加载执行 删除注解,只保留重要有用的
- Java SE7虚拟机指令操作码助记符
本文转载自Java SE7 虚拟机指令操作码助记符 导语 在Class文件中,Java方法里的方法体,也就是代表着一个Java源码程序中程序的部分存储在方法表集合的Code属性中.存储在Code属性中 ...
- 1053 Path of Equal Weight——PAT甲级真题
1053 Path of Equal Weight 给定一个非空的树,树根为 RR. 树中每个节点 TiTi 的权重为 WiWi. 从 RR 到 LL 的路径权重定义为从根节点 RR 到任何叶节点 L ...
- 开源OA办公平台搭建教程:O2OA表单中的事件
1. 概述 我们设计表单的时候经常会有这样的需求:在表单或者组件加载前/加载后,能够执行一些脚本来改变表单或组件的样式和行为.或者用户在点击组件的时候能够执行脚本.表单的事件就是为这样的场景而设计. ...