P2261 [CQOI2007]余数求和 【整除分块】
一、题面
二、分析
参考文章:click here
对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围。
假设$ n = 10 ,k = 5 $
$$ i : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \\ \lfloor \frac{k}{i} \rfloor : 5 \ 2 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 $$
我们推导出假设$ L = i $,那么,对应的 $ \lfloor \frac{k}{i} \rfloor $ 相等的最右边界为 $ R = \lfloor \frac{k}{ \lfloor \frac{k}{i} \rfloor } \rfloor $.(具体证明可以看参考文章。)
需要注意的细节是
1 $R$可能超过$n$,所以要限制一下。
2 一定要用$long long$。
三、AC代码
1 #include <bits/stdc++.h>
2
3 using namespace std;
4 typedef long long ll;
5
6 int main()
7 {
8 //freopen("input.txt", "r", stdin);
9 ll n, k;
10 while(scanf("%lld%lld", &n, &k) != EOF)
11 {
12 ll ans = n * k;
13 ll L, R;
14 for(L = 1; L <= n; L = R + 1)
15 {
16 ll res = k/L;
17 if(res)
18 {
19 // 必须加min,因为k/res可能超过n,例如 k = 10, n = 6
20 R = min(k/res, n);
21 }
22 else
23 R = n;
24 ans -= res * (R - L + 1) * (R + L) / 2;
25 }
26 printf("%lld\n", ans);
27 }
28 return 0;
29 }
P2261 [CQOI2007]余数求和 【整除分块】的更多相关文章
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- [CQOI2007] 余数求和 - 整除分块
\(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i} ...
- LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- Bzoj 1257 [CQOI2007]余数之和 (整除分块)
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
随机推荐
- 线程池原理讲解——ThreadPoolExecutor
[这是前几天的存货,留着没发表,今天又复习一遍,润化了部分内容,继续干] 说线程池前,先简单回顾一下线程的状态吧: 1.线程状态转换 线程的五种状态,及其转换关系: 2.线程创建方式 三种:两个接口一 ...
- μC/OS-III---I笔记5---多值信号量
多值信号量 操作系统中利用信号量解决进程间的同步和互斥(互斥信号量)的问题,在多道程序环境下,操作系统如何实现进程之间的同步和互斥显得极为重要.比如对同一部分资源的访问是要互斥,不能在另一个进程A在访 ...
- Node.js & ES Modules & Jest
Node.js & ES Modules & Jest CJS & ESM CommonJS https://en.wikipedia.org/wiki/CommonJS ht ...
- wifi IP address scanner on macOS
wifi IP address scanner on macOS Nmap Network Scanning https://nmap.org/book/inst-macosx.html https: ...
- 专利 & 发明专利 & 专利查询
专利 & 发明专利 & 专利查询 PDF 文档中表格解析的方法.系统.存储介质及电子设备 中国专利公布公告 http://epub.sipo.gov.cn/index.action 中 ...
- scroll calendar & scroll view
scroll calendar & scroll view https://taro-docs.jd.com/taro/docs/components/viewContainer/scroll ...
- privacy policy 隐私政策
privacy policy 隐私政策 privacy agreement css layout & ssr page flex & center & fonts demo h ...
- c++ readIntger writeIntger
类似CE的read/writeIntger函数(外部) #include <iostream> #include <Windows.h> #include <TlHelp ...
- [转]【视觉 SLAM-2】 视觉SLAM- ORB 源码详解 2
转载地址:https://blog.csdn.net/kyjl888/article/details/72942209 1 ORB-SLAM2源码详解 by 吴博 2 https://github.c ...
- C++算法代码——单词查找
题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=2472 题目描述 给定 n 个长度不超过 50 的由小写英文字母组成的单词准备查询,以 ...