Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:

9 2 -4 1 -1 8 and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

Sample Output

15

题目大意

输入一个N(N最大100),然后输入N2 个数(每个数的取值范围为:[-127, 127] ),N * N的矩阵,找其中的子矩阵所有元素和最大的值

解题思路

每行的数等于当前行加上之前行的数,前缀和

$a[i][j] = a[i - 1][j] + 当前数$

假设一开始,数组存储状态如图所示:

每行数据的每一列 等于 当前列之前行的所有数之和(包括当前行)

从第x( 1 <= x <= n )行开始

到第y ( x <= y <= n )行结束。遍历找的最大子段和

num[y][k] - num[x - 1][k]就是第k列的第x行到第y行的所有数之和

其实就是把第x行到第y行每一列的数按列加起来,变成一维数组

然后找其最大子段和

下面是AC代码:

#include <cstdio>
#include <cstdlib>
#include <memory.h> #define N 105 int num[N][N]; int main()
{
int n;
while (~scanf("%d", &n))
{
memset(num, 0, sizeof(num));
int temp;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &temp);
num[i][j] = num[i - 1][j] + temp;
}
} int max = 0;
int sum; for (int i = 1; i <= n; i++)
{
for (int j = i; j <= n; j++)
{
sum = 0;
for (int k = 1; k <= n; k++)
{
temp = num[j][k] - num[i - 1][k];
sum = sum > 0 ? sum + temp : temp;
max = sum > max ? sum : max;
}
}
}
printf("%d\n", max);
}
return 0;
}

To the Max(动态规划)的更多相关文章

  1. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  2. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  3. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  4. 动态规划算法(java)

    一.动态规划算法 众所周知,递归算法时间复杂度很高为(2^n),而动态规划算法也能够解决此类问题,动态规划的算法的时间复杂度为(n^2).动态规划算法是以空间置换时间的解决方式,一开始理解起来可能比较 ...

  5. 连续子数组的最大和 java实现

    package findMax; /** * 连续子数组的最大和 * @author root * */ public class FindMax { static int[] data = {1,- ...

  6. 【动态规划】HDU 1081 & XMU 1031 To the Max

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...

  7. HDOJ-1003 Max Sum(最大连续子段 动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=1003 给出一个包含n个数字的序列{a1,a2,..,ai,..,an},-1000<=ai<=100 ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. 第八章 nginx基础介绍

    一.nginx概述 nginx是一个开源且高性能.可靠的http web服务.代理服务. 开源:直接获取源代码 高性能:支持海量并发 可靠:服务稳定 二.nginx特点 1.高性能高并发 性能高,支持 ...

  2. MySQL数据库基础-2范式

    数据库结构设计 范式 设计数据库的规范 第12345范式,凡是之间有依赖关系. 关系模型的发明者埃德加·科德最早提出这一概念,并于1970 年代初定义了第一范式.第二范式和第三范式的概念 设计关系数据 ...

  3. Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

    这篇论文试图将GAT应用于KG任务中,但是问题是知识图谱中实体与实体之间关系并不相同,因此结构信息不再是简单的节点与节点之间的相邻关系.这里进行了一些小的trick进行改进,即在将实体特征拼接在一起的 ...

  4. Android测试工具 UIAutomator介绍

    UI Automator 测试工具定义以及用途 UI Automator 测试框架提供了一组 API,用于构建在用户应用和系统应用上执行交互的界面测试.通过 UI Automator API,您可以执 ...

  5. Vulkan Driver for VC4(Raspberry Pi 3b) base on mesa

    这是一篇关于在raspberry Pi 3b上移植实现vulkan 驱动的文章. 经过一段时间的代码搬运,终于实现了零的突破,可以在树莓派3B上运行Vulkan triangle/texture.当然 ...

  6. Paraview教程

    快速入门 https://www.youtube.com/watch?time_continue=1017&v=Y1RATo2swM8 Cyprien Rusu系列 Paraview Vide ...

  7. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  8. 全球最火的程序员学习路线!没有之一!3天就在Github收获了接近1w点赞

    大家好,我是G哥,目前人在荆州办事,但是干货还是要安排上! 国外有一个爆火的开发人员学习路线,目前已经在 Github收获了 131 k+ star,Star 数量在 Github 所有仓库中排名第 ...

  9. Eureka实现注册中心

    CAP原则又称CAP定理,指的是在一个分布式系统中,Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),三者不可得兼.它是分布 ...

  10. 常用命令--windows

    查看端口号是否占用并杀进程 1 netstat -ano | findstr " " 2 tasklist | findstr " " 3 taskkill / ...