Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:

9 2 -4 1 -1 8 and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

Sample Output

15

题目大意

输入一个N(N最大100),然后输入N2 个数(每个数的取值范围为:[-127, 127] ),N * N的矩阵,找其中的子矩阵所有元素和最大的值

解题思路

每行的数等于当前行加上之前行的数,前缀和

$a[i][j] = a[i - 1][j] + 当前数$

假设一开始,数组存储状态如图所示:

每行数据的每一列 等于 当前列之前行的所有数之和(包括当前行)

从第x( 1 <= x <= n )行开始

到第y ( x <= y <= n )行结束。遍历找的最大子段和

num[y][k] - num[x - 1][k]就是第k列的第x行到第y行的所有数之和

其实就是把第x行到第y行每一列的数按列加起来,变成一维数组

然后找其最大子段和

下面是AC代码:

#include <cstdio>
#include <cstdlib>
#include <memory.h> #define N 105 int num[N][N]; int main()
{
int n;
while (~scanf("%d", &n))
{
memset(num, 0, sizeof(num));
int temp;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &temp);
num[i][j] = num[i - 1][j] + temp;
}
} int max = 0;
int sum; for (int i = 1; i <= n; i++)
{
for (int j = i; j <= n; j++)
{
sum = 0;
for (int k = 1; k <= n; k++)
{
temp = num[j][k] - num[i - 1][k];
sum = sum > 0 ? sum + temp : temp;
max = sum > max ? sum : max;
}
}
}
printf("%d\n", max);
}
return 0;
}

To the Max(动态规划)的更多相关文章

  1. HDU 1081 To The Max(动态规划)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  2. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  3. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  4. 动态规划算法(java)

    一.动态规划算法 众所周知,递归算法时间复杂度很高为(2^n),而动态规划算法也能够解决此类问题,动态规划的算法的时间复杂度为(n^2).动态规划算法是以空间置换时间的解决方式,一开始理解起来可能比较 ...

  5. 连续子数组的最大和 java实现

    package findMax; /** * 连续子数组的最大和 * @author root * */ public class FindMax { static int[] data = {1,- ...

  6. 【动态规划】HDU 1081 & XMU 1031 To the Max

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...

  7. HDOJ-1003 Max Sum(最大连续子段 动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=1003 给出一个包含n个数字的序列{a1,a2,..,ai,..,an},-1000<=ai<=100 ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. ffmpeg实现视频转gif及gif缩放(ffmpeg4.2.2)

    一,为什么选择ffmpeg处理gif? 1,ffmpeg可以从视频中截取gif 2,ffmpeg在缩放gif时出错的机率较低, 而imagemagick在缩放gif时容易出错 我们在后面的例子中可以看 ...

  2. centos 7.8 添加磁盘后查看、分区、格式化、挂载

    基础环境 公有云 由于磁盘空间快用完了,现在决定多加一个40G磁盘 第一步 分区 fdisk -l #查看当前磁盘信息 fdisk /dev/vdb #对指定磁盘进行操作 如上图一般磁盘的第一个分区都 ...

  3. MVC单文件上传

    前言 现在来写下最基础的单文件上传,完成后可以扩展成各种不同的上传方式 HTML <input id="Input_File" type="file" / ...

  4. js实现无缝连接轮播图(七)实现左侧按钮的功能

    <!-- 这个animate.js 必须写到 index.js的上面引入 --><script src="js/animate.js"></scrip ...

  5. 微服务nacos服务注册与发现

    一,以上一篇为基础 微服务从nacos配置中心获得配置信息 给service1, service2添加依赖 <dependency> <groupId>com.alibaba. ...

  6. net core 微服务框架 Viper 调用链路追踪

    1.Viper是什么? Viper 是.NET平台下的Anno微服务框架的一个示例项目.入门简单.安全.稳定.高可用.全平台可监控.底层通讯可以随意切换thrift grpc. 自带服务发现.调用链追 ...

  7. CSS动画之转换模块

    2D转换模块:注意点:1.可以类似于过渡模块一样简写,但是这里不是用逗号隔开而是用空格 2.2D的转换模块会修改元素的坐标系,所以旋转之后的平移就不是水平平移 格式:旋转:transform: rot ...

  8. CSS动画之过渡模块

    :hover伪类选择器可以用于所有的选择器(只有在悬停时,执行选择器的属性)CSS3中新增过渡模块:transition property(属性)duration(过渡效果花费的时间)timing-f ...

  9. Java学习的第二十六天

    1.过滤处理流 DataOutputStream输入数据 用DataInputStream读数据 2.方法太多记不清 3.明天学习内存操作流和缓冲流

  10. 关于maven下,lombok的安装

    1.首先下载lombok的jar包,可至https://mvnrepository.com/下载 2.双击即会自动扫描eclipse.exe,如图: 选择eclipse.exe,点击install/u ...