[PyTorch 学习笔记] 4.1 权值初始化
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/grad_vanish_explod.py
在搭建好网络模型之后,一个重要的步骤就是对网络模型中的权值进行初始化。适当的权值初始化可以加快模型的收敛,而不恰当的权值初始化可能引发梯度消失或者梯度爆炸,最终导致模型无法收敛。下面分 3 部分介绍。第一部分介绍不恰当的权值初始化是如何引发梯度消失与梯度爆炸的,第二部分介绍常用的 Xavier 方法与 Kaiming 方法,第三部分介绍 PyTorch 中的 10 种初始化方法。
梯度消失与梯度爆炸
考虑一个 3 层的全连接网络。
$H_{1}=X \times W_{1}$,$H_{2}=H_{1} \times W_{2}$,$Out=H_{2} \times W_{3}$
其中第 2 层的权重梯度如下:
$\begin{aligned} \Delta \mathrm{W}{2} &=\frac{\partial \mathrm{Loss}}{\partial \mathrm{W}{2}}=\frac{\partial \mathrm{Loss}}{\partial \mathrm{out}} * \frac{\partial \mathrm{out}}{\partial \mathrm{H}{2}} * \frac{\partial \mathrm{H}{2}}{\partial \mathrm{w}{2}} \ &=\frac{\partial \mathrm{Loss}}{\partial \mathrm{out}} * \frac{\partial \mathrm{out}}{\partial \mathrm{H}{2}} * \mathrm{H}_{1} \end{aligned}$
所以 $\Delta \mathrm{W}{2}$ 依赖于前一层的输出 $H{1}$。如果 $H_{1}$ 趋近于零,那么 $\Delta \mathrm{W}{2}$ 也接近于 0,造成梯度消失。如果 $H{1}$ 趋近于无穷大,那么 $\Delta \mathrm{W}_{2}$ 也接近于无穷大,造成梯度爆炸。要避免梯度爆炸或者梯度消失,就要严格控制网络层输出的数值范围。
下面构建 100 层全连接网络,先不使用非线性激活函数,每层的权重初始化为服从 $N(0,1)$ 的正态分布,输出数据使用随机初始化的数据。
import torch
import torch.nn as nn
from common_tools import set_seed
set_seed(1) # 设置随机种子
class MLP(nn.Module):
def __init__(self, neural_num, layers):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.neural_num = neural_num
def forward(self, x):
for (i, linear) in enumerate(self.linears):
x = linear(x)
return x
def initialize(self):
for m in self.modules():
# 判断这一层是否为线性层,如果为线性层则初始化权值
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight.data) # normal: mean=0, std=1
layer_nums = 100
neural_nums = 256
batch_size = 16
net = MLP(neural_nums, layer_nums)
net.initialize()
inputs = torch.randn((batch_size, neural_nums)) # normal: mean=0, std=1
output = net(inputs)
print(output)
输出为:
tensor([[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan]], grad_fn=<MmBackward>)
也就是数据太大(梯度爆炸)或者太小(梯度消失)了。接下来我们在forward()
函数中判断每一次前向传播的输出的标准差是否为 nan,如果是 nan 则停止前向传播。
def forward(self, x):
for (i, linear) in enumerate(self.linears):
x = linear(x)
print("layer:{}, std:{}".format(i, x.std()))
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break
return x
输出如下:
layer:0, std:15.959932327270508
layer:1, std:256.6237487792969
layer:2, std:4107.24560546875
.
.
.
layer:29, std:1.322983152787379e+36
layer:30, std:2.0786820453988485e+37
layer:31, std:nan
output is nan in 31 layers
可以看到每一层的标准差是越来越大的,并在在 31 层时超出了数据可以表示的范围。
下面推导为什么网络层输出的标准差越来越大。
首先给出 3 个公式:
$E(X \times Y)=E(X) \times E(Y)$:两个相互独立的随机变量的乘积的期望等于它们的期望的乘积。
$D(X)=E(X^{2}) - [E(X)]^{2}$:一个随机变量的方差等于它的平方的期望减去期望的平方
$D(X+Y)=D(X)+D(Y)$:两个相互独立的随机变量之和的方差等于它们的方差的和。
可以推导出两个随机变量的乘积的方差如下:
$D(X \times Y)=E[(XY)^{2}] - [E(XY)]^{2}=D(X) \times D(Y) + D(X) \times [E(Y)]^{2} + D(Y) \times [E(X)]^{2}$
如果 $E(X)=0$,$E(Y)=0$,那么 $D(X \times Y)=D(X) \times D(Y)$
我们以输入层第一个神经元为例:
$\mathrm{H}{11}=\sum{i=0}^{n} X_{i} \times W_{1 i}$
其中输入 X 和权值 W 都是服从 $N(0,1)$ 的正态分布,所以这个神经元的方差为:
$\begin{aligned} \mathbf{D}\left(\mathrm{H}{11}\right) &=\sum{i=0}^{n} \boldsymbol{D}\left(X_{i}\right) * \boldsymbol{D}\left(W_{1 i}\right) \ &=n *(1 * 1) \ &=n \end{aligned}$
标准差为:$\operatorname{std}\left(\mathrm{H}{11}\right)=\sqrt{\mathbf{D}\left(\mathrm{H}{11}\right)}=\sqrt{n}$,所以每经过一个网络层,方差就会扩大 n 倍,标准差就会扩大 $\sqrt{n}$ 倍,n 为每层神经元个数,直到超出数值表示范围。对比上面的代码可以看到,每层神经元个数为 256,输出数据的标准差为 1,所以第一个网络层输出的标准差为 16 左右,第二个网络层输出的标准差为 256 左右,以此类推,直到 31 层超出数据表示范围。可以把每层神经元个数改为 400,那么每层标准差扩大 20 倍左右。从 $D(\mathrm{H}{11})=\sum{i=0}^{n} D(X_{i}) \times D(W_{1 i})$,可以看出,每一层网络输出的方差与神经元个数、输入数据的方差、权值方差有关,其中比较好改变的是权值的方差 $D(W)$,所以 $D(W)= \frac{1}{n}$,标准差为 $std(W)=\sqrt\frac{1}{n}$。因此修改权值初始化代码为nn.init.normal_(m.weight.data, std=np.sqrt(1/self.neural_num))
,结果如下:
layer:0, std:0.9974957704544067
layer:1, std:1.0024365186691284
layer:2, std:1.002745509147644
.
.
.
layer:94, std:1.031973123550415
layer:95, std:1.0413124561309814
layer:96, std:1.0817031860351562
修改之后,没有出现梯度消失或者梯度爆炸的情况,每层神经元输出的方差均在 1 左右。通过恰当的权值初始化,可以保持权值在更新过程中维持在一定范围之内,不过过大,也不会过小。
上述是没有使用非线性变换的实验结果,如果在forward()
中添加非线性变换tanh
,每一层的输出方差还是会越来越小,会导致梯度消失。因此出现了 Xavier 初始化方法与 Kaiming 初始化方法。
Xavier 方法与 Kaiming 方法
Xavier 方法
Xavier 是 2010 年提出的,针对有非线性激活函数时的权值初始化方法,目标是保持数据的方差维持在 1 左右,主要针对饱和激活函数如 sigmoid 和 tanh 等。同时考虑前向传播和反向传播,需要满足两个等式:$\boldsymbol{n}{\boldsymbol{i}} * \boldsymbol{D}(\boldsymbol{W})=\mathbf{1}$ 和 $\boldsymbol{n}{\boldsymbol{i+1}} * \boldsymbol{D}(\boldsymbol{W})=\mathbf{1}$,可得:$D(W)=\frac{2}{n_{i}+n_{i+1}}$。为了使 Xavier 方法初始化的权值服从均匀分布,假设 $W$ 服从均匀分布 $U[-a, a]$,那么方差 $D(W)=\frac{(-a-a)^{2}}{12}=\frac{(2 a){2}}{12}=\frac{a{2}}{3}$,令 $\frac{2}{n_{i}+n_{i+1}}=\frac{a^{2}}{3}$,解得:$\boldsymbol{a}=\frac{\sqrt{6}}{\sqrt{n_{i}+n_{i+1}}}$,所以 $W$ 服从分布 $U\left[-\frac{\sqrt{6}}{\sqrt{n_{i}+n_{i+1}}}, \frac{\sqrt{6}}{\sqrt{n_{i}+n_{i+1}}}\right]$
所以初始化方法改为:
a = np.sqrt(6 / (self.neural_num + self.neural_num))
# 把 a 变换到 tanh,计算增益
tanh_gain = nn.init.calculate_gain('tanh')
a *= tanh_gain
nn.init.uniform_(m.weight.data, -a, a)
并且每一层的激活函数都使用 tanh,输出如下:
layer:0, std:0.7571136355400085
layer:1, std:0.6924336552619934
layer:2, std:0.6677976846694946
.
.
.
layer:97, std:0.6426210403442383
layer:98, std:0.6407480835914612
layer:99, std:0.6442216038703918
可以看到每层输出的方差都维持在 0.6 左右。
PyTorch 也提供了 Xavier 初始化方法,可以直接调用:
tanh_gain = nn.init.calculate_gain('tanh')
nn.init.xavier_uniform_(m.weight.data, gain=tanh_gain)
nn.init.calculate_gain()
上面的初始化方法都使用了tanh_gain = nn.init.calculate_gain('tanh')
。
nn.init.calculate_gain(nonlinearity,param=**None**)
的主要功能是经过一个分布的方差经过激活函数后的变化尺度,主要有两个参数:
- nonlinearity:激活函数名称
- param:激活函数的参数,如 Leaky ReLU 的 negative_slop。
下面是计算标准差经过激活函数的变化尺度的代码。
x = torch.randn(10000)
out = torch.tanh(x)
gain = x.std() / out.std()
print('gain:{}'.format(gain))
tanh_gain = nn.init.calculate_gain('tanh')
print('tanh_gain in PyTorch:', tanh_gain)
输出如下:
gain:1.5982500314712524
tanh_gain in PyTorch: 1.6666666666666667
结果表示,原有数据分布的方差经过 tanh 之后,标准差会变小 1.6 倍左右。
Kaiming 方法
虽然 Xavier 方法提出了针对饱和激活函数的权值初始化方法,但是 AlexNet 出现后,大量网络开始使用非饱和的激活函数如 ReLU 等,这时 Xavier 方法不再适用。2015 年针对 ReLU 及其变种等激活函数提出了 Kaiming 初始化方法。
针对 ReLU,方差应该满足:$\mathrm{D}(W)=\frac{2}{n_{i}}$;针对 ReLu 的变种,方差应该满足:$\mathrm{D}(W)=\frac{2}{n_{i}}$,a 表示负半轴的斜率,如 PReLU 方法,标准差满足 $\operatorname{std}(W)=\sqrt{\frac{2}{\left(1+a^{2}\right) * n_{i}}}$。代码如下:nn.init.normal_(m.weight.data, std=np.sqrt(2 / self.neural_num))
,或者使用 PyTorch 提供的初始化方法:nn.init.kaiming_normal_(m.weight.data)
,同时把激活函数改为 ReLU。
常用初始化方法
PyTorch 中提供了 10 中初始化方法
- Xavier 均匀分布
- Xavier 正态分布
- Kaiming 均匀分布
- Kaiming 正态分布
- 均匀分布
- 正态分布
- 常数分布
- 正交矩阵初始化
- 单位矩阵初始化
- 稀疏矩阵初始化
每种初始化方法都有它自己适用的场景,原则是保持每一层输出的方差不能太大,也不能太小。
参考资料
如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。
[PyTorch 学习笔记] 4.1 权值初始化的更多相关文章
- [PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 ...
- [PyTorch 学习笔记] 6.2 Normalization
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_and_initialize.py https: ...
- caffe中权值初始化方法
首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...
- SQL反模式学习笔记14 关于Null值的使用
目标:辨别并使用Null值 反模式:将Null值作为普通的值,反之亦然 1.在表达式中使用Null: Null值与空字符串是不一样的,Null值参与任何的加.减.乘.除等其他运算,结果都是Null: ...
- 神经网络权值初始化方法-Xavier
https://blog.csdn.net/u011534057/article/details/51673458 https://blog.csdn.net/qq_34784753/article/ ...
- pytorch(14)权值初始化
权值的方差过大导致梯度爆炸的原因 方差一致性原则分析Xavier方法与Kaiming初始化方法 饱和激活函数tanh,非饱和激活函数relu pytorch提供的十种初始化方法 梯度消失与爆炸 \[H ...
- 权值初始化 - Xavier和MSRA方法
设计好神经网络结构以及loss function 后,训练神经网络的步骤如下: 初始化权值参数 选择一个合适的梯度下降算法(例如:Adam,RMSprop等) 重复下面的迭代过程: 输入的正向传播 计 ...
- matlab学习笔记13_1 函数返回值
一起来学matlab-matlab学习笔记13函数 13_1 函数返回值 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 https://blog.csdn.net/qq_36556 ...
- [深度学习] pytorch学习笔记(2)(梯度、梯度下降、凸函数、鞍点、激活函数、Loss函数、交叉熵、Mnist分类实现、GPU)
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. ...
随机推荐
- 数据库Schema
在学习SQL的过程中,会遇到一个让你迷糊的Schema的概念.实际上,schema就是数据库对象的集合,这个集合包含了各种对象如:表.视图.存储过程.索引等.为了区分不同的集合,就需要给不同的集合起不 ...
- 029_go语言中的非阻塞通道
代码演示 package main import "fmt" func main() { messages := make(chan string) signals := make ...
- 小谢第50问:vuex的五个属性-使用-介绍
一.Vuex 是什么? 官网:Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 关键词:状态 ...
- 蓝奏云数值验证码识别,python调用虹鱼图灵识别插件,超高正确率
识别验证码一直是本人想要做的事情,一直在接触按键精灵,了解到有一个虹鱼图灵识别插件专门做验证码和图像识别,原理就是图片处理和制作字库识别,制作字库我一直觉得很麻烦,工程量太大.不管怎样,它能用能达到我 ...
- C#LeetCode刷题-双指针
双指针篇 # 题名 刷题 通过率 难度 3 无重复字符的最长子串 24.5% 中等 11 盛最多水的容器 43.5% 中等 15 三数之和 16.1% 中等 16 最接近的三数之和 3 ...
- golang的fmt
前言 不做文字搬运工,多做思路整理 就是为了能速览标准库,只整理我自己看过的...... 注意!!!!!!!!!! 单词都是连着的,我是为了看着方便.理解方便才分开的 1.fmt 中文文档 [英文文档 ...
- Linux用户锁定、解锁及锁定查看
[root@l01 ~]# passwd -S pispread pispread PS -- - (Password set, SHA512 crypt.)用户锁定 [root@l01 ~]# pa ...
- Spring Boot 2.x基础教程:使用集中式缓存Redis
之前我们介绍了两种进程内缓存的用法,包括Spring Boot默认使用的ConcurrentMap缓存以及缓存框架EhCache.虽然EhCache已经能够适用很多应用场景,但是由于EhCache是进 ...
- Mybatis-02-CRUD及配置解析
CRUD 1.namespace namespace中的包名要和Dao/Mapper接口的包名一致! 2.select 选择,查询语句; id:对应的namespace中的方法名 resultType ...
- 019-链接 使用name属性
路由设置: (r'/', index.IndexHandler), tornado.web.url(r'/lj', index.LJHandler, {"word3":" ...