考虑40分。

设出状态 f[i]表示匹配到了i位还有多少期望长度能停止。可以发现这个状态有环 需要高斯消元。

提供一种比较简单的方法:由于期望的线性可加性 可以设状态f[i]表示由匹配到i到匹配到i+1需要的期望长度。

需要预处理前缀和和KMP的nex数组来辅助转移。

if(n==1)
{
gc(a);
len=strlen(a+1);
ll j=0;
memset(nex,0,sizeof(nex));
rep(2,len,i)
{
while(j&&a[i]!=a[j+1])j=nex[j];
if(a[i]==a[j+1])++j;
nex[i]=j;
}
rep(0,len-1,i)
{
f[i]=1;
for(ll j=0;j<=25;++j)
{
if(a[i+1]-'a'!=j)
{
ll w=i;
while(w&&a[w+1]-'a'!=j)w=nex[w];
if(a[w+1]-'a'!=j){if(i)f[i]=(f[i]+sum[i-1])%mod;}
else f[i]=(f[i]+sum[i-1]-sum[w])%mod;
++f[i];
}
}
if(i>=1)sum[i]=(sum[i-1]+f[i])%mod;
else sum[i]=f[i];
}
ll ans=0;
rep(0,len-1,i)ans=(ans+f[i])%mod;
putl(ans);
}

考虑正解。

容易想到建立出AC自动机 在trie图上跑。

易设状态f[i]表示到达i这个点的期望长度。

遗憾的是 这个玩意根本不能转移。或者说转移必然存在问题 比如 \(f_i=\sum_{v\in fa[i],vis[v]\neq 1}\frac{f_v+1}{26}\)

vis数组表示v是否是终止节点。

容易想错的是 v转移到i的概率确实是1/26 但是i从v处转移的概率却不一定是1/26.

可能到达v的次数有很多次 每次概率都是1/26不过这个次数并没有被统计到 这是关键点。

而且据EI dalao所说 v转移到i的所有的概率和不为1 而且 E[x/y] 通常不等于 E[x]/E[y]。

总之 当做概率出现的问题吧.

考虑由最开始的状态倒推期望 设f[i]表示到达i这个节点还需要多少长度才能停止。

容易 发现转移 \(f_i=1+\sum_{v\in son[i]}\frac{f_v}{26}\)

可以发现这个状态的转移概率确实1/26.

而且这个状态带环。所以高斯消元即可。

const ll MAXN=12,maxn=210;
ll T,n,len,cnt;
inline ll ksm(ll b,ll p){ll cnt=1;while(p){if(p&1)cnt=(ll)cnt*b%mod;b=(ll)b*b%mod;p=p>>1;}return cnt;}
char a[maxn];
ll nex[maxn],q[maxn];
ll b[maxn][maxn];
ll f[maxn],sum[maxn];//f[i]表示由长度i到长度i+1的期望.
struct AC
{
ll s;
ll fail;
ll ch[26];
}t[maxn];
inline ll get_new()
{
++cnt;
t[cnt]=t[200];
return cnt;
}
inline void insert(char *a)
{
ll p=0;
ll len=strlen(a+1);
rep(1,len,i)
{
ll w=a[i]-'a';
if(!t[p].ch[w])t[p].ch[w]=get_new();
p=t[p].ch[w];
}
t[p].s=1;
}
inline void get_fail()
{
ll l=0,r=0;
rep(0,25,i)if(t[0].ch[i])q[++r]=t[0].ch[i];
while(++l<=r)
{
ll x=q[l];
rep(0,25,i)
{
ll tn=t[x].ch[i];
if(tn)fail(tn)=t[fail(x)].ch[i],q[++r]=tn;
else t[x].ch[i]=t[fail(x)].ch[i];
}
}
rep(1,r,i)t[q[i]].s|=t[fail(q[i])].s;
}
inline void GAUSS()
{
rep(0,cnt,i)
{
ll p=i;
rep(i+1,cnt,j)if(abs(b[j][i])>abs(b[i][i]))p=j;
if(p!=i){rep(0,cnt,k)swap(b[i][k],b[p][k]);swap(f[i],f[p]);}
ll d=ksm(b[i][i],mod-2);
rep(0,cnt,j)
{
if(i==j)continue;
ll ww=d*b[j][i]%mod;
rep(0,cnt,k)b[j][k]=(b[j][k]-b[i][k]*ww)%mod;
f[j]=(f[j]-f[i]*ww)%mod;
}
}
rep(0,cnt,i)f[i]=f[i]*ksm(b[i][i],mod-2)%mod;
}
signed main()
{
freopen("1.in","r",stdin);
//freopen("1.out","w",stdout);
//freopen("substring.in","r",stdin);
//freopen("substring.out","w",stdout);
gt(T);
while(T--)
{
gt(n);
{
cnt=0;t[0]=t[200];
rep(1,n,i)gc(a),insert(a);
get_fail();
//构建矩阵.
ll ww=ksm(26,mod-2);
memset(f,0,sizeof(f));
memset(b,0,sizeof(b));
rep(0,cnt,i)
{
b[i][i]=1;
if(t[i].s)continue;
rep(0,25,j)
{
int tn=t[i].ch[j];
b[i][tn]=(b[i][tn]-ww)%mod;
}
++f[i];
}
/*rep(0,cnt,i)
{
rep(0,cnt,j)cout<<(b[i][j]+mod)%mod<<' ';
cout<<f[i]<<endl;
}*/
GAUSS();
/*rep(0,cnt,i)
{
rep(0,cnt,j)cout<<b[i][j]<<' ';
cout<<f[i]<<endl;
}*/
//ll ans=0;
//rep(1,cnt,i)if(t[i].s)ans=(ans+f[i])%mod;
//rep(0,cnt,i)putl((f[i]+mod)%mod);
putl((f[0]+mod)%mod);
}
}
return 0;
}

4.23 子串 AC自动机 概率期望 高斯消元的更多相关文章

  1. 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元

    http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...

  2. 【BZOJ4820】[Sdoi2017]硬币游戏 AC自动机+概率DP+高斯消元

    [BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬 ...

  3. hdu5955 Guessing the Dice Roll【AC自动机】【高斯消元】【概率】

    含高斯消元模板 2016沈阳区域赛http://acm.hdu.edu.cn/showproblem.php?pid=5955 Guessing the Dice Roll Time Limit: 2 ...

  4. [HNOI2011]XOR和路径 概率期望 高斯消元

    题面 题解:因为异或不太好处理,,,因此按位来算,这样最后的答案就是每一位上的值乘对应的权值再求和.本着期望要倒退的原则,,,我们设$f[i]$表示从$i$到$n$,xor和为1的概率.那么观察$xo ...

  5. BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)

    容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...

  6. bzoj 1444 AC自动机 + 矩阵乘法 | 高斯消元

    恶补了一下AC自动机,花了一天时间终于全部搞明白了. 思路:将每个人的串加入AC自动机,在AC自动机生成的状态图上建边,注意单词末尾的节点只能转移到自己概率为1, 然后将矩阵自乘几十次后误差就很小了, ...

  7. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  8. luoguP4457 [BJOI2018]治疗之雨 概率期望 + 高斯消元

    应该是最后一道紫色的概率了....然而颜色啥也代表不了.... 首先看懂题意: 你现在有$p$点体力,你的体力上限为$n$ 在一轮中, 1.如果你的体力没有满,你有$\frac{1}{m + 1}$的 ...

  9. [HNOI2013] 游走 - 概率期望,高斯消元,贪心

    假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...

随机推荐

  1. 第三方 CSS 并不安全

    最近一段时间,关于 通过 CSS 创建 “keylogger”(键盘记录器) 的讨论很多. 有些人呼吁浏览器厂商去“修复”它.有些人则深入研究,表示它仅能影响通过类 React 框架建立的网站,并指责 ...

  2. OldTrafford after 102 days

    THE RED GO MARCHING ON   One Team One Love Through the highs and the lows   One hundred and two long ...

  3. 理解ASCII,Unicode和UTF-8关系

    前言:之前一直就好奇这个问题,但是一直没解决,今天我总算明白了,感谢大佬们的科普 转自:https://blog.csdn.net/Deft_MKJing/article/details/794604 ...

  4. Hexo学习

    01.安装 Node.js 打开官方网站 https://nodejs.org 267b6d6d335cf62907c70321a1cbd3b 安装步骤非常简单,一直next,下一步就可以了,默认安装 ...

  5. 让windows原生CMD使用ls命令

    1.新建ls.bat. 2.编辑内容: @echo off dir 3.将ls.bat文件放到C:\Windows目录下. 效果:

  6. 微信解密encryptedDataStr获取用户信息

    A:<button open-type="getPhoneNumber" bindgetphonenumber="getPhoneNumber">& ...

  7. 不会用Java Future,我怀疑你泡茶没我快, 又是超长图文!!

    你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it well enough ...

  8. HTB::Postman

    实验环境 渗透过程 0x01 信息搜集 masscan扫描 扫描结果目标服务开放了22(ssh),80(http),6379(redis),10000(webmin)端口 nmap扫描 nmap -s ...

  9. JVM 学习笔记(一)

    一:jvm架构图解 我们经常关注的jdk和jre如图所示: jre包含在jdk中,这里说一下jdk和jre的作用 JRE是Java Runtime Environment的缩写,是Java程序的运行环 ...

  10. 数据可视化实例(七): 计数图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter5/chapter5 计数图 (Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取 ...