LINK:Dark Horse

首先考虑1所在位置.

假设1所在位置在1号点 对于此时剩下的其他点的方案来说.

把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案.

可以得到 1在任何位置剩下的方案数都相同 所以不妨设1所在点为1 求出方案乘以n.

考虑怎么求方案 即求出剩下的n-1个区间 且每个区间的最小值都不能是给出的m的值.

直接做需要状压 做不了。

考虑容斥 容易想到答案为\(\sum_{s}(-1)^{|s|}f_s\)

其中\(f_s\)表示集合s一定不合法的方案数.

求这个东西也很麻烦. 对于那m个人 显然要排序.

从小到大dp 可以发现大的可以放到小的位置至此还需要再记一个状压状态直接炸了.

考虑从大到小dp 此时可以发现钦定大的为最小值 小的就不能再放到大的里面了然后就可以dp了.

推出式子后可以发现可以前缀和优化一下 复杂度\(n\cdot m\cdot 2^n\)

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define inf 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const int MAXN=18,maxn=1<<MAXN;
int n,m,maxx;
int a[MAXN],f[MAXN][maxn],g[maxn];
int c[maxn],fac[maxn],inv[maxn];
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline int C(int a,int b){return a<b?0:fac[a]*(ll)inv[b]%mod*inv[a-b]%mod;}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
rep(1,m,i)get(a[i])-1;
sort(a+1,a+1+m);
reverse(a+1,a+1+m);
maxx=1<<n;--maxx;
fac[0]=1;
rep(1,maxx,i)fac[i]=(ll)fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
fep(maxx-1,0,i)inv[i]=(ll)inv[i+1]*(i+1)%mod;
f[0][0]=1;
rep(1,m,i)
{
fep(maxx,0,j)
{
f[i][j]=f[i-1][j];
if(!f[i-1][j])continue;
rep(1,n,k)
{
if(1<<(k-1)&j)continue;
f[i][j|1<<(k-1)]=(f[i][j|1<<(k-1)]+(ll)f[i-1][j]*C(maxx-a[i]-j,(1<<(k-1))-1)%mod*fac[(1<<(k-1))])%mod;
}
}
}
int ans=0;
rep(0,maxx,i)
{
g[i]=g[i>>1]+(i&1);
ans=(ans+(g[i]&1?-1:1)*(ll)f[m][i]*fac[maxx-i])%mod;
}
ans=(ll)ans*(maxx+1)%mod;
ans=(ans+mod)%mod;put(ans);
return 0;
}

ARC 093 F Dark Horse 容斥 状压dp 组合计数的更多相关文章

  1. Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)

    Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...

  2. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  3. [BZOJ2669][CQOI2012]局部最小值(容斥+状压DP)

    发现最多有8个限制位置,可以以此为基础DP和容斥. $f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$ $cnt_j$表 ...

  4. bzoj3812 主旋律 容斥+状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...

  5. ARC093 F Dark Horse——容斥

    题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...

  6. Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)

    题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 ...

  7. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  8. 【HDOJ5713】K个联通块(状压DP,计数)

    题意:有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块. 1≤T≤201≤K≤N≤140≤M≤N∗(N+1)/21≤a,b≤N 思路:From http://blog ...

  9. 『数 变进制状压dp』

    数 Description 给定正整数n,m,问有多少个正整数满足: (1) 不含前导0: (2) 是m的倍数: (3) 可以通过重排列各个数位得到n. \(n\leq10^{20},m\leq100 ...

随机推荐

  1. selenium 怎么查找定位鼠标移上去显示,移开鼠标就消失的内容

    场景:鼠标移动到一级菜单上二级菜单才显示,移开鼠标二级菜单就消失,如何查找定位二级菜单 操作: 1.打开F12,点击sources 2.鼠标移动到一级菜单“工单管理” 3.按下键盘“Ctrl+\”,暂 ...

  2. day76 vue框架入门

    目录 一.vue.js快速入门使用 1 vue.js库的下载 2 vue.js库的使用 3 vue.js的M-V-VM思想 4 显示数据 二.常用指令 1 操作属性 2 事件的绑定 3 样式操作 3. ...

  3. day21 模块与包+软件开发目录规范

    目录 一.导入模块的两种方式 二.模块搜索的路径的优先级 三.循环导入 四.区分py文件的两种用途 五.编写一个规范的模板 五.包 1 什么是包 2 为什么要有包 3 包的相关使用 3.1 在当前文件 ...

  4. 使用Git GUI工具 上传本地仓库到 gitee码云仓库

    前言: 网上关于git的命令操作与使用很多教程和博客,在使用git工具时我发现有一个 git Gui 可视化工具,我觉得十分的亲切,由于我之前一直是使用svn作为版本控制管理工具,都是可视化操作,使用 ...

  5. 从零搭建Spring Cloud Gateway网关(三)——报文结构转换

    背景 作为网关,有些时候可能报文的结构并不符合前端或者某些服务的需求,或者因为某些原因,其他服务修改报文结构特别麻烦.或者需要修改的地方特别多,这个时候就需要走网关单独转换一次. 实现 话不多说,直接 ...

  6. (4)webpack中配置css,scss,less第三方loader

    为什么要使用第三方loader 一般引入样式文件,我们会在html中引入样式标签. 很明显,这样就跟之前在script中引入js文件一样,会导致二次请求.我们希望webpack像处理js文件一样处理样 ...

  7. Appium+Python3环境搭建,其实超简单!【软件测试教程】

    appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是appium+python, ...

  8. Python Hacking Tools - Port Scanner

    Socket Programming 1.  Scan the target Vulnerable Server. And test it by telnet. 2. Write the scanne ...

  9. 树形dp 之 小胖守皇宫

    题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:有边相连的宫殿间可以互相望见.大内保卫森严,三步一岗,五步一 ...

  10. 请解释ASP.NET中的web页面与其隐藏类之间的关系

    其实页面与其隐藏类之间就是一个部分类的关系,你在页面上放一个一个的控件就是在这个类中定义一个一个的属性, 因为是同一个类的部分类的关系,所以隐藏类可以访问到页面上控件,这样做是为了把展现与处理逻辑分开 ...