Description

程序员 ZS 有一棵树,它可以表示为 \(n\) 个顶点的无向连通图,顶点编号从 \(0\) 到 \(n-1\),它们之间有 \(n-1\) 条边。每条边上都有一个非零的数字。

一天,程序员 ZS 无聊,他决定研究一下这棵树的一些特性。他选择了一个十进制正整数 \(M\),\(\gcd(M,10)=1\)。

对于一对有序的不同的顶点 \((u, v)\),他沿着从顶点 \(u\) 到顶点 \(v\)的最短路径,按经过顺序写下他在路径上遇到的所有数字(从左往右写),如果得到一个可以被 \(M\) 整除的十进制整数,那么就认为 \((u,v)\) 是有趣的点对。

帮助程序员 ZS 得到有趣的对的数量。

Hint

  • \(1\le n\le 10^5\)
  • \(1\le m\le 10^9,\gcd(m, 10) = 1\)
  • \(1\le \text{边权} < 10\)

Solution

这种树上路径的统计问题基本都是 点分治,而点分治的重点和难点就是如何 统计经过分治中心的满足条件的路径的个数

这里采用 容斥法:即现分治中心为 \(s\),当前答案等于整个子树 \(s\) 的答案减去以 \(s\) 各个子结点为根的子树的答案。

考虑如何统计。

我们设有一条路径是 \(x\rightarrow y\),分治中心为 \(s\),路径 \(x\rightarrow s\) 对应的数字为 \(pd\),\(s\rightarrow y\) 对应 \(nd\),\(s\) 到 \(y\) 的距离为 \(l\)。

那么只有 \(pd \times 10^l + nd \equiv 0 \pmod m\) 成立时满足要求。

变形一下:\(pd \equiv -nd \times 10^{-l}\pmod m\)。

于是我们可以这样搞:把所有的 \(pd\) 用 map 存起来,记录一下个数,用 pair 数组把 \((nd, l)\) 记录下来。

导入所有了路径信息后,枚举 pair 数组,查找 map 中的元素配对即可。

预处理一下 \(10\) 的幂及其逆元的话,时间复杂度 \(O(n\log^2 n)\)。如果用 Hash Table 可以优化到理论 \(O(n\log n)\),但没什么必要。

Code

/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : Codeforces 715E Digit Tree
*/
#include <cstdio>
#include <map>
#include <utility>
#include <vector> using namespace std;
const int N = 1e5 + 5; namespace Inv {
void extgcd(long long a, long long b, long long& x, long long& y) {
if (!b) x = 1, y = 0;
else extgcd(b, a % b, y, x), y -= a / b * x;
}
inline long long get(long long b, long long p) {
long long x, y;
extgcd(b, p, x, y);
x = (x % p + p) % p;
return x;
}
} int n, m;
long long p10[N], invp[N];
long long ans;
struct edge { int to, len; };
vector<edge> G[N]; int root;
int maxp[N], size[N];
bool centr[N]; int getSize(int x, int f) {
size[x] = 1;
for (auto y : G[x])
if (!centr[y.to] && y.to != f)
size[x] += getSize(y.to, x);
return size[x];
}
void getCentr(int x, int f, int t) {
maxp[x] = 0;
for (auto y : G[x])
if (!centr[y.to] && y.to != f) {
getCentr(y.to, x, t);
maxp[x] = max(maxp[x], size[y.to]);
}
maxp[x] = max(maxp[x], t - size[x]);
if (maxp[x] < maxp[root]) root = x;
} vector<pair<long long, int> > dat;
map<long long, int> cnt; void getData(int x, int f, long long pd, long long nd, int dep) {
if (dep >= 0) cnt[pd]++, dat.push_back(make_pair(nd, dep));
for (auto y : G[x]) {
if(centr[y.to] || y.to == f) continue;
long long tpd = (pd + y.len * p10[dep + 1] % m) % m;
long long tnd = (nd * 10 % m + y.len) % m;
getData(y.to, x, tpd, tnd, dep + 1);
}
} inline long long count(int x, int d) {
long long ret = 0;
cnt.clear(), dat.clear();
if (d == 0) getData(x, 0, 0, 0, -1);
else getData(x, 0, d % m, d % m, 0); for (auto p : dat) {
long long t = ((-p.first * invp[p.second + 1] % m) + m) % m;
if (cnt.count(t)) ret += cnt[t];
if (d == 0 && p.first == 0) ++ret;
}
return ret + (d == 0 ? cnt[0] : 0);
} void solve(int x) {
maxp[root = 0] = N;
getCentr(x, 0, getSize(x, 0));
int s = root; centr[s] = true; for (auto y : G[s])
if (!centr[y.to])
solve(y.to); ans += count(s, 0);
for (auto y : G[s])
if (!centr[y.to])
ans -= count(y.to, y.len);
centr[s] = false;
} signed main() {
scanf("%d%d", &n, &m);
for (register int i = 1; i < n; i++) {
int u, v, l;
scanf("%d%d%d", &u, &v, &l);
++u, ++v;
G[u].push_back(edge{v, l});
G[v].push_back(edge{u, l});
} p10[0] = 1 % m;
for (register int i = 1; i <= n; i++)
p10[i] = p10[i - 1] * 10 % m;
invp[n] = Inv::get(p10[n], m);
for (register int i = n - 1; i; i--)
invp[i] = invp[i + 1] * 10 % m; ans = 0, solve(1);
printf("%lld\n", ans);
return 0;
}

【Codeforces 715C】Digit Tree(点分治)的更多相关文章

  1. [Codeforces 715C] Digit Tree

    [题目链接] https://codeforces.com/contest/715/problem/C [算法] 考虑点分治 一条路径(x , y)合法当且仅当 : d(x) * 10 ^ dep(x ...

  2. CF 716E. Digit Tree [点分治]

    题意:一棵树,边上有一个个位数字,走一条路径会得到一个数字,求有多少路径得到的数字可以整除\(P\) 路径统计一般就是点分治了 \[ a*10^{deep} + b \ \equiv \pmod P\ ...

  3. CF716E Digit Tree 点分治

    题意: 给出一个树,每条边上写了一个数字,给出一个P,求有多少条路径按顺序读出的数字可以被P整除.保证P与10互质. 分析: 统计满足限制的路径,我们首先就想到了点分治. 随后我们就需要考量,我们是否 ...

  4. 【Codeforces715C&716E】Digit Tree 数学 + 点分治

    C. Digit Tree time limit per test:3 seconds memory limit per test:256 megabytes input:standard input ...

  5. Codeforces 716 E Digit Tree

    E. Digit Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...

  6. 【题解】Digit Tree

    [题解]Digit Tree CodeForces - 716E 呵呵以为是数据结构题然后是淀粉质还行... 题目就是给你一颗有边权的树,问你有多少路径,把路径上的数字顺次写出来,是\(m\)的倍数. ...

  7. Problem - D - Codeforces Fix a Tree

    Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...

  8. Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]

    洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...

  9. 【CodeForces】914 E. Palindromes in a Tree 点分治

    [题目]E. Palindromes in a Tree [题意]给定一棵树,每个点都有一个a~t的字符,一条路径回文定义为路径上的字符存在一个排列构成回文串,求经过每个点的回文路径数.n<=2 ...

随机推荐

  1. HotSpot的启动过程(配视频进行源码分析)

    本文将详细介绍HotSpot的启动过程,启动过程涉及到的逻辑比较复杂,细节也比较多,为了让大家更快的了解这部分知识,我录制了对应的视频放到了B站上,大家可以参考. 第4节-HotSpot的启动过程 下 ...

  2. kernel 目录

    1. 直接控制硬件 arch : Soc 相关 drivers : 硬件驱动 2. block: 块设备操作逻辑 kernel : 内核实现 net mm  : 内存管理 fs : 各种文件系统实现 ...

  3. win10安装MySQL5.7.31 zip版

    因为我之前卸载了安装的(msi,exe)格式的MySQL,现在重新安装zip版的MySQL. 1,下载MySQL MySQL下载地址 : https://dev.mysql.com/downloads ...

  4. Python_faker (伪装者)创建假数据

    faker (伪装者)创建假数据 工作中,有时候我们需要伪造一些假数据,如何使用 Python 伪造这些看起来一点也不假的假数据呢? Python 有一个包叫 Faker,使用它可以轻易地伪造姓名.地 ...

  5. js常用函数和事件

    1.常规函数 javascript常规函数包括以下9个函数: (1)alert函数:显示一个警告对话框,包括一个OK按钮. (2)confirm函数:显示一个确认对话框,包括OK.Cancel按钮. ...

  6. php 进行图片裁剪

    <?php $src_path = '1.jpg'; //创建源图的实例 $src = imagecreatefromstring(file_get_contents($src_path)); ...

  7. overflow:scroll

    <div style="position: relative;"> <div class="container mycontent" styl ...

  8. java开发两年了,连个java代理模式都摸不透,你怎么跳槽涨薪?

    前言 代理模式(Proxy Pattern),23种java常用设计模式之一.代理模式的定义:代理类对被代理对象提供一种代理以控制对这个对象的访问.代理类主要负责为委托类预处理消息.过滤消息.把消息转 ...

  9. 【建议收藏】阿里P7总结的Spring注解笔记,把组件注册讲的明明白白

    环境搭建 注解的方式是通过配置类的方式来注入组件,注解注入要比XML注入的方式简单,注解注入也需要在前者的基础上,添加一个spring-context的包,也是实际开发中常用的方式. 准备所需Jar包 ...

  10. 史上最全!2020面试阿里,字节跳动90%被问到的JVM面试题(附答案)

    前言:最近老是收到小伙伴的私信问我能不能帮忙整理出一份JVM相关的面试题出来,说自己在大厂去面试的时候这一块问的是特别多的,每次自己学的时候每次都学不到重点去.这不他来了,一份详细的JVM面试真题给大 ...