Description

\(n\) 个正整数排成一列,每个位置 \(i\) 有一个初始值 \(A_i\) 以及目标值 \(B_i\)。

一次操作可以选定一个区间 \([l, r]\),并将区间内所有数赋值为 \(\max_{i\in[l, r]} A_i\)。

你可以进行任意次操作,每次操作基于上次操作的结果。

求结果若干次操作后,使得与操作后的值与目标值相同的位置数最大化。

Hint

\(1\le n\le 10^5, 1\le A_i, B_i\le 10^9\)。

原题数据过于奇妙于是就直接取最大值反正能做。官方那个三合一做法真的 /no

Solution

首先,我们不难求出对于每个 \(i\in[1, n]\),该位置可以向左侧取到目标值 \(B_i = A_j\) 的第一个位置 \(L_i = j(\le i)\) 或者不存在,同理对于右侧 \(R_i\) 我们也这么干。

为什么我们只取第一个位置呢?显然可能存在多个可取的位置,不过注意到我们对位置 \(i\) 向 \(j\) 进行一次取值操作之后,会对中间的这些值造成影响。我们希望成功的取值操作尽可能多,那么影响的范围自然是越少越好了。

观察到一个性质,对于一个 \(i\),如果 \(L_i\) (\(R_i\) 同理不再赘述)存在,说明 \(j\in[L_i +1, i]\) 这个区间的所有 \(A_j\) 的值都小于 \(A_{L_i}\)。那么一次操作下去,所有这个区间内的值都会失效,如果有像“从 \(A_j\) 取值到 \(k(<i)\)”这样的操作那必然不能同时与当前这个同时执行。

于是我们尝试大力将题目转化:有两排点,每排 \(n\) 个,对于第一排每个点 \(i\) 向第二排的第 \(L_i, R_i\) 个点分别连一条边。若选取一个第一排的点 \(i\),那么需要至少选中连接 \(i\) 的两条或一条边的一条边(没有边则不能选)。要求选中的边两两不相交(除端点外),求最多选取第三个第一排的点。

发现当 \(A_i\) 互不相同时,每个点最多连出去 \(1\) 条边,这就是个经典的 LIS 问题,不过稍加拓展就可以得到本题的正解。

还是令 \(f(i, j)\) 为处理到第一排前 \(i\) 个点,第二排涉及到的点编号最大的为 \(j\),可以选出第一排点个数的最大值。那么转移比较简单:

\[f(i, L_i) \leftarrow \max_{j \le L_i} \{f(i-1, j)\} +1, \qquad f(i, R_i) \leftarrow \max_{j \le R_i} \{f(i-1, j)\} +1
\]

不难发现把 \(i\) 滚掉之后实质上就是一个前缀 \(\max\),于是使用树状数组优化为 \(O(n\log n)\)。

Code

/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : eJOI2020 Exam
*/
#include <algorithm>
#include <cstdio>
#include <set>
#include <vector> using namespace std;
const int N = 1e5 + 5; int n;
int A[N], B[N];
int L[N], R[N]; int tr[N]; // 树状数组求前缀 max
inline void upd(int p, int v) {
for (; p <= n; p += p & -p) tr[p] = max(tr[p], v);
}
inline int get(int p) {
int v = 0;
for (; p; p -= p & -p) v = max(tr[p], v);
return v;
} signed main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", A + i);
for (int i = 1; i <= n; i++) scanf("%d", B + i); vector<pair<int, int> > tmp(n * 2);
set<int> rec({0, n + 1});
for (int i = 1; i <= n; i++) tmp[i - 1] = {A[i], i};
for (int i = 1; i <= n; i++) tmp[i + n - 1] = {B[i], -i};
sort(tmp.begin(), tmp.end(), greater<pair<int, int> >());
for (auto it : tmp) {
if (it.second < 0) {
int l = *rec.lower_bound(-it.second);
if (A[l] == it.first) R[-it.second] = l;
int r = *--rec.upper_bound(-it.second);
if (A[r] == it.first) L[-it.second] = r;
} else rec.insert(it.second);
} // 求 L & R for (int i = 1; i <= n; i++) { // 同步更新
int l = get(L[i]), r = get(R[i]);
if (L[i]) upd(L[i], l + 1);
if (R[i]) upd(R[i], r + 1);
} printf("%d\n", get(n));
return 0;
}

【eJOI2020】考试(dp & 树状数组优化)的更多相关文章

  1. Codeforces 909 C. Python Indentation (DP+树状数组优化)

    题目链接:Python Indentation 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现.现在有一种简化版的Python,只有两种语句: (1)'s'语句:Simple ...

  2. 2015南阳CCPC C - The Battle of Chibi DP树状数组优化

    C - The Battle of Chibi Description Cao Cao made up a big army and was going to invade the whole Sou ...

  3. bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Sta ...

  4. FZU2236 第十四个目标 dp+树状数组优化

    分析:这种题烂大街,n^2,然后数据结构优化下到nlogn,离散化 #include <cstdio> #include <cstring> #include <queu ...

  5. Codeforces 909C Python Indentation:树状数组优化dp

    题目链接:http://codeforces.com/contest/909/problem/C 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现. 现在有一种简化版的Pytho ...

  6. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  7. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  8. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  9. Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)

    题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...

随机推荐

  1. high Performance

    目的 找出系统性能瓶颈(包括硬件瓶颈和软件瓶颈): 提供性能优化的方案(升级硬件?改进系统系统结构?): 达到合理的硬件和软件配置: 使系统资源使用达到最大的平衡. CPU过渡使用会造成大量进程等待C ...

  2. kali 系列学习06 - 攻击之密码破解

    参考书 <kali linux渗透测试技术详解> 清华大学出版社  2015 杨波 一.medusa使用 原理:并行登陆破解 1.只输入单个命令,是查看帮助 root@kali:/tool ...

  3. 精尽MyBatis源码分析 - MyBatis 的 SQL 执行过程(一)之 Executor

    该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...

  4. 如何使用ABBYY FineReader 的用户模式?

    在运用ABBYY FineReader 15(Windows系统)进行文档识别时,用户可能会遇到识别的文档包含一些特殊字符或者其他软件无法识别的字体等情况,容易造成识别出现乱码的结果.在这种情况下,用 ...

  5. 【VUE】8.VUEX核心概念

    1. Vuex核心概念主要如下 state : 存储共享数据 mutation: 变更store中的数据,方法,不能异步操作 action: 异步操作,通过触发mutation变更数据 getter: ...

  6. CLH lock queue的原理解释及Java实现

    目录 背景 原理解释 Java代码实现 定义QNode 定义Lock接口 定义CLHLock 使用场景 运行代码 代码输出 代码解释 CLHLock的加锁.释放锁过程 第一个使用CLHLock的线程自 ...

  7. 浅析Nginx与Apache的区别

    Nginx相对于Apache的优势: 1.轻量级,采用C进行编写,同样的web服务,会占用更少的内存及资源 2.抗并发,nginx以epoll and kqueue作为开发模型,处理请求是异步非阻塞的 ...

  8. 【电子取证:FTK Imager篇】DD、E01系统镜像仿真

    星河滚烫,人生有理想! ​ ---[suy999] DD.E01系统镜像动态仿真 (一)使用到的软件 1.FTK Imager (v4.5.0.3) 2.VMware Workstation 15 P ...

  9. 【CF983C】elevator——记忆化搜索

    (题面来自luogu) 题意翻译 题意 一个9层的楼有一个可以容纳4个人的电梯,你要管理这个电梯. 现在各层楼上有一些在排队的人,你知道他们在哪层要到哪层去.你也知道到电梯门口的顺序.根据公司的规定, ...

  10. 在Spring data中使用r2dbc

    目录 简介 依赖关系 数据库连接配置 数据库初始化 DAO操作 Service操作和Transaction controller 测试 简介 上篇文章我们讲到了怎么在Spring webFlux中使用 ...