Keywords

  • reasoning 推理
  • Deductive reasoning(for a basic logic) 演绎推理
  • analogy 类比;比喻 /əˈnælədʒi/
  • definition of terminology  /ˌtɜːmɪˈnɒlədʒi/术语的定义
  • proposition/ˌprɒpəˈzɪʃn/命题
  • distinction/dɪˈstɪŋkʃn/n. 区别;差别
  • arithmetic /əˈrɪθmətɪk/ 算术,算法
  • anthropomorphize/,ænθrəpəʊ'mɔːfaɪz/vt. 赋与人性,人格化
  • knowledge base(KB) 知识库
  • connectionism /kə'nekʃənizəm/ 联结主义
  • retrieval /rɪˈtriːvl/n. 检索;恢复;取回;拯救
  • inference: 推理
  • entailment:蕴含
  • syntax:  /ˈsɪntæks/n. 语法;句法;
  • semantic: /sɪˈmæntɪk/adj. 语义的;语义学的
  • falsity: /ˈfɔːlsəti/n. 虚伪;错误;谎言;不真实
  • notation /nəʊˈteɪʃn/n. 符号
  • terminology:/ˌtɜːmɪˈnɒlədʒi/n. 术语,术语学;用辞
  • theorem/ˈθɪərəm/n. [数] 定理;原理
  • axiom: /ˈæksiəm/n. [数] 公理
  • iff: 当且仅当
  • K |= a是语义蕴含,K |- b是形式推演
 

What's all the Fuss about?

  • Resources required to solve a problem
    • Time(computational complexity)
    • Memory
  • Some problem are easy to solve
    • 1+1=?
    • This is good!
  • Some problems are difficult to solve
    • Playing chess, scheduling/timetabling...
    • Is this bad?
  • Some problems cannot be solved!
    • Reasoning, planning,...
 

What is knowledge?

  • taking the world to be one way and not another
  • the propositions for the true or false encode what you know about the world.
 

What is representation?

  • symbolic encoding of propositions believed by some agent 命题的符号编码,由某些行为者相信
  • symbols standing for things in the world
 

What is reasoning?

  • Manipulation of symbols encoding propositions to produce representations of new propositions.对编码命题的符号进行操作,以产生新命题的表示。
 

Why knowledge?

  • taking an intentional stance
 

Why representation?

  • intentional stance says nothing about what is / is not represented symbolically
 

Why reasoning?

  • Want knowledge to affect action
    • We don't want to do action A if sentence P is in KB,
    • But rather do action A if world believed in satisfies P
  • Difference:
    • P may not be explicitly represented
    • Need to apply what is known to particulars of given situation
  • Usually need more than just DB-style retrieval of facts in the KB
 

Entailment

  • Sentences P1, P2, ..., Pn entail sentence P iff the truth of P is implicit in the truth of P1, P2, ..., Pn
  • Inference: the process of calculating entailments
    • sound: get only entailment
    • complete: get all entailment
  • Sometimes want unsound / incomplete reasoning
  • Logic: study of entailment relations
 

Using Logic

  • No universal language / semantics
  • No universal reasoning scheme
  • Start with first-order predicate calculus(FOL)
 

Why do we need formal Knowledge Representation?

  • Natural languages exhibit ambiguity
  • ambiguity make it difficult to make any inferences
 

Syntax vs Semantics

  • Syntax: Describe the legal sentences in a knowledge representation language.
  • Semantics: Refers to the meaning of sentences. Semantics talks about truth and falsity.
 

Propositions

  • Propositions are statements of fact.
  • We shall use single letters to represent propositions
    • P: Socrates is bald.
 

Formulae in Propositional Logic

Syntax

  • BNF grammar
    • Sentence ::= AtomicSentence || ComplexSentence
    • AtomicSentence ::= True || False || P || Q || R || . .
    • ComplexSentence ::= ( Sentence ) || Sentence Connective Sentence || ¬ Sentence
    • Connective ::= ∧ || ∨ || → || ↔
 

Semantics

  • The semantics of the connectives can be given by truth tables. It determines the semantics for complex formulae.

What is a logic?

  • A logic consists of:
    • A formal system for expressing knowledge about a domain consisting of
      • Syntax: Sentences(well formed formulae)
      • Semantics: Meaning
    • A proof theory: rules of inference for deducing sentences from a knowledge base
 

Provability

  • λ ⊢ ρ: we can construct a proof for ρ from λ using axioms and rules  of inference
  • If λ is empty (i.e., 0⊢ρ) and ρ is a single formula, then we say that ρ is a theorem of the logic
 

Entailment

  • λ |= ρ: whenever the formula(s) λ are true, one of the formula(s) in ρ is true
  • In the case where ρ is a single formula, we can determine whether  λ |= ρ by constructing a truth table for λ and ρ. If, in any row of the  truth table where all the formulae in λ are true, ρ is also true, then  λ |= ρ.
  • If λ is empty, we say that ρ is a tautology
 

Soundness and Completeness

  • λ |= a是语义蕴含, λ |- b是形式推演
  • An inference procedure (and hence a logic) is sound if and only if it  preserves truth
    • In other words ⊢ is sound iff whenever λ ⊢ ρ, then λ |= ρ
      • Soundness 是说右侧推演的知识都是被λ蕴含的(推出来的知识都是正确的)
  • A logic is complete if and only if it is capable of proving all truths
    • In other words, whenever λ |= ρ, then λ ⊢ ρ
      • Completeness 是说,左侧蕴含出来的知识都可以推演出来
  • A logic is decidable if and only if we can write a mechanical procedure (computer program) which when asked λ ⊢ ρ it can eventually halt and answer “yes” or answer “no”
 

Knowledge 1:Propositional Logic 命题逻辑基础及符号的更多相关文章

  1. JQuery基础概念--$符号的实质

    $符号的实质 //$其实就是一个函数,以后用$的时候,记得跟小括号 $(); //参数不同,功能就不同 //3种用法 //1. 参数是一个function, 入口函数 $(function () { ...

  2. python 基础 特殊符号的使用

    python语句中的一些基本规则和特殊符号: 1.井号# 表示之后的字符为python注释 Python注释语句从#号字符开始,注释可以在语句的任何一个地方开始,解释器会忽略掉该行#号之后的所有内容 ...

  3. shell基础之符号与语法

            shell脚本如今已经成为了一种非常普遍的脚本语言,之所以如此广泛的被应用,毋庸置疑它是有它的独到之处的.shell脚本语言和其它的语言比方说c/c++有何不同呢?c/c++等语言属于 ...

  4. C#语法基础----变量 符号 数据转换

    变量的作用:为了更好的管理内存数据,不同类型的数据存放在不同的内存块中. 变量的特点:不同数据类型占用的存储空间大小不一样. 变量的意义:内存地址是一串十六进制数,非常不好记忆,通过变量可以快速找到数 ...

  5. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic

    Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits

  6. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic

    propositional variables (or statement variables), letters used for propositional variables are p, q, ...

  7. JAVA基础——运算符号

    运算符(java) 算数运算符:+,-,*,/,%(取余),++,-- 赋值运算符:= 关系运算符:<, >, >= ,<= ,== , != 逻辑运算符:&& ...

  8. 2018美赛准备之路——Matlab基础——基本运算符号表示

    π pi ln(x) log(x)   lg(x) log10(x) log2(x) log2(x) 根号 sqrt(x) x的y次方 x^y e的y次方 exp(y)    

  9. Python基础知识(Basic knowledge)

    Python基础知识(Basic knowledge) 1.认识Python&基础环境搭建 2.Python基础(上) 3.Python基础(中) 4.Python基础(下) 5.Python ...

随机推荐

  1. error PRJ0003 : 生成“cmd.exe”时出错 2010-01-19 22:26

    今天用vs2005编译时代码时竟然出现了error PRJ0003 : 生成“cmd.exe”时出错这样的错误,这不是刺激我吗,我们先看msdn的解释吧. 错误消息 生成“command line”时 ...

  2. Android Studio && GitHub 团队多人一起开发

    曾几何时,花了两天的时间搞了合并项目,搞得乱七八糟der,但最终还是被我搞定了,too 乱 to 做笔记.过了几个月,也就是前几天,抱着从头开始的决心,再次尝试,然鹅并没有结果.今天,再一次重新开始, ...

  3. Android SDK 环境的搭建 --图形界面模式和命令行模式

    Android 开发首先就是要搭建开发环境,没有用过Eclipse(ADT)开发过,直接用的Android Studio,其中最主要的就是 Android SDK的安装和搭建,所以这里只是总结下And ...

  4. 算法-搜索(5)m路搜索树

    动态m路搜索树即系统运行时可以动态调整保持较高搜索效率的最多m路的搜索树.以3路搜索树为例说明其关键码排序关系:   const int MaxValue=; template <class T ...

  5. 【python系统学习17】python中的文件读写

    python中的文件读写 文件读写,是Python代码调用电脑文件的主要功能,能被用于读取和写入文本.音频片段.Excel文档.邮件以及任何保存在电脑上的东西. 可使用python批量的操作本地文件, ...

  6. CentOS 6.x/7.x上安装git

    yum安装 # yum info git # yum install -y git 可以通过下面的命令来检查是否安装了git环境 git --version 参考:如何在CentOS 6.x/7.x上 ...

  7. 6. 二十不惑,ObjectMapper使用也不再迷惑

    一滴水,用显微镜看,也是一个大世界.本文已被 https://www.yourbatman.cn 收录,里面一并有Spring技术栈.MyBatis.JVM.中间件等小而美的专栏供以免费学习.关注公众 ...

  8. Hadoop的SecondaryNameNode的作用是什么?

    为节省篇幅,将SecondaryNameNode简称SNN,NameNode简称NN. NN与fsimage.edits文件 NN负责管理HDFS中所有的元数据,包括但不限于文件/目录结构.文件权限. ...

  9. maven文件合集

    maven项目目录结构 聚合项目的pom.xml <?xml version="1.0" encoding="UTF-8"?> <projec ...

  10. 焦大:seo该研究用户需求还是搜索算法

    http://www.wocaoseo.com/thread-62-1-1.html 上一篇博客我写了用户需求点是做seo排名最首要关注的东西,其实这个我在以前也一直说的,seo有两大核心,一个是检索 ...