Knowledge 1:Propositional Logic 命题逻辑基础及符号
Keywords
- reasoning 推理
- Deductive reasoning(for a basic logic) 演绎推理
- analogy 类比;比喻 /əˈnælədʒi/
- definition of terminology /ˌtɜːmɪˈnɒlədʒi/术语的定义
- proposition/ˌprɒpəˈzɪʃn/命题
- distinction/dɪˈstɪŋkʃn/n. 区别;差别
- arithmetic /əˈrɪθmətɪk/ 算术,算法
- anthropomorphize/,ænθrəpəʊ'mɔːfaɪz/vt. 赋与人性,人格化
- knowledge base(KB) 知识库
- connectionism /kə'nekʃənizəm/ 联结主义
- retrieval /rɪˈtriːvl/n. 检索;恢复;取回;拯救
- inference: 推理
- entailment:蕴含
- syntax: /ˈsɪntæks/n. 语法;句法;
- semantic: /sɪˈmæntɪk/adj. 语义的;语义学的
- falsity: /ˈfɔːlsəti/n. 虚伪;错误;谎言;不真实
- notation /nəʊˈteɪʃn/n. 符号
- terminology:/ˌtɜːmɪˈnɒlədʒi/n. 术语,术语学;用辞
- theorem/ˈθɪərəm/n. [数] 定理;原理
- axiom: /ˈæksiəm/n. [数] 公理
- iff: 当且仅当
- K |= a是语义蕴含,K |- b是形式推演
What's all the Fuss about?
- Resources required to solve a problem
- Time(computational complexity)
- Memory
- Some problem are easy to solve
- 1+1=?
- This is good!
- Some problems are difficult to solve
- Playing chess, scheduling/timetabling...
- Is this bad?
- Some problems cannot be solved!
- Reasoning, planning,...
What is knowledge?
- taking the world to be one way and not another
- the propositions for the true or false encode what you know about the world.
What is representation?
- symbolic encoding of propositions believed by some agent 命题的符号编码,由某些行为者相信
- symbols standing for things in the world
What is reasoning?
- Manipulation of symbols encoding propositions to produce representations of new propositions.对编码命题的符号进行操作,以产生新命题的表示。
Why knowledge?
- taking an intentional stance
Why representation?
- intentional stance says nothing about what is / is not represented symbolically
Why reasoning?
- Want knowledge to affect action
- We don't want to do action A if sentence P is in KB,
- But rather do action A if world believed in satisfies P
- Difference:
- P may not be explicitly represented
- Need to apply what is known to particulars of given situation
- Usually need more than just DB-style retrieval of facts in the KB
Entailment
- Sentences P1, P2, ..., Pn entail sentence P iff the truth of P is implicit in the truth of P1, P2, ..., Pn
- Inference: the process of calculating entailments
- sound: get only entailment
- complete: get all entailment
- Sometimes want unsound / incomplete reasoning
- Logic: study of entailment relations
Using Logic
- No universal language / semantics
- No universal reasoning scheme
- Start with first-order predicate calculus(FOL)
Why do we need formal Knowledge Representation?
- Natural languages exhibit ambiguity
- ambiguity make it difficult to make any inferences
Syntax vs Semantics
- Syntax: Describe the legal sentences in a knowledge representation language.
- Semantics: Refers to the meaning of sentences. Semantics talks about truth and falsity.
Propositions
- Propositions are statements of fact.
- We shall use single letters to represent propositions
- P: Socrates is bald.
Formulae in Propositional Logic
Syntax
- BNF grammar
- Sentence ::= AtomicSentence || ComplexSentence
- AtomicSentence ::= True || False || P || Q || R || . .
- ComplexSentence ::= ( Sentence ) || Sentence Connective Sentence || ¬ Sentence
- Connective ::= ∧ || ∨ || → || ↔
Semantics
- The semantics of the connectives can be given by truth tables. It determines the semantics for complex formulae.
What is a logic?
- A logic consists of:
- A formal system for expressing knowledge about a domain consisting of
- Syntax: Sentences(well formed formulae)
- Semantics: Meaning
- A proof theory: rules of inference for deducing sentences from a knowledge base
Provability
- λ ⊢ ρ: we can construct a proof for ρ from λ using axioms and rules of inference
- If λ is empty (i.e., 0⊢ρ) and ρ is a single formula, then we say that ρ is a theorem of the logic
Entailment
- λ |= ρ: whenever the formula(s) λ are true, one of the formula(s) in ρ is true
- In the case where ρ is a single formula, we can determine whether λ |= ρ by constructing a truth table for λ and ρ. If, in any row of the truth table where all the formulae in λ are true, ρ is also true, then λ |= ρ.
- If λ is empty, we say that ρ is a tautology
Soundness and Completeness
- λ |= a是语义蕴含, λ |- b是形式推演
- An inference procedure (and hence a logic) is sound if and only if it preserves truth
- In other words ⊢ is sound iff whenever λ ⊢ ρ, then λ |= ρ
- Soundness 是说右侧推演的知识都是被λ蕴含的(推出来的知识都是正确的)
- A logic is complete if and only if it is capable of proving all truths
- In other words, whenever λ |= ρ, then λ ⊢ ρ
- Completeness 是说,左侧蕴含出来的知识都可以推演出来
- A logic is decidable if and only if we can write a mechanical procedure (computer program) which when asked λ ⊢ ρ it can eventually halt and answer “yes” or answer “no”
Knowledge 1:Propositional Logic 命题逻辑基础及符号的更多相关文章
- JQuery基础概念--$符号的实质
$符号的实质 //$其实就是一个函数,以后用$的时候,记得跟小括号 $(); //参数不同,功能就不同 //3种用法 //1. 参数是一个function, 入口函数 $(function () { ...
- python 基础 特殊符号的使用
python语句中的一些基本规则和特殊符号: 1.井号# 表示之后的字符为python注释 Python注释语句从#号字符开始,注释可以在语句的任何一个地方开始,解释器会忽略掉该行#号之后的所有内容 ...
- shell基础之符号与语法
shell脚本如今已经成为了一种非常普遍的脚本语言,之所以如此广泛的被应用,毋庸置疑它是有它的独到之处的.shell脚本语言和其它的语言比方说c/c++有何不同呢?c/c++等语言属于 ...
- C#语法基础----变量 符号 数据转换
变量的作用:为了更好的管理内存数据,不同类型的数据存放在不同的内存块中. 变量的特点:不同数据类型占用的存储空间大小不一样. 变量的意义:内存地址是一串十六进制数,非常不好记忆,通过变量可以快速找到数 ...
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic
Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic
propositional variables (or statement variables), letters used for propositional variables are p, q, ...
- JAVA基础——运算符号
运算符(java) 算数运算符:+,-,*,/,%(取余),++,-- 赋值运算符:= 关系运算符:<, >, >= ,<= ,== , != 逻辑运算符:&& ...
- 2018美赛准备之路——Matlab基础——基本运算符号表示
π pi ln(x) log(x) lg(x) log10(x) log2(x) log2(x) 根号 sqrt(x) x的y次方 x^y e的y次方 exp(y)
- Python基础知识(Basic knowledge)
Python基础知识(Basic knowledge) 1.认识Python&基础环境搭建 2.Python基础(上) 3.Python基础(中) 4.Python基础(下) 5.Python ...
随机推荐
- Python3 执行JS出现JSON未定义问题
two = function(e) { var t = e.data; e.url.match(/(https?:)?(\/\/)([^/]*)/) || (e.url = "https:/ ...
- 使用 codeblocks 编写C++ udp组播程序遇到的问题
编译错误 会出现好多undefined reference to'WSAStartup to@8之类的错误,都是undefind开头的 解决方法: Settings -> Compiler se ...
- IntelliJ IDEA安装Activiti插件并使用
一.安装Activiti插件 1.搜索插件 点击菜单[File]-->[Settings...]打开[Settings]窗口. 点击左侧[Plugins]按钮,在右侧输出"actiBPM",点击 ...
- hook框架-frida使用-APP在模拟器无法打开,用钩子去除限制
app拿soul为例子 一.环境配置 #模拟器的frida服务为86 #frida-server-12.9.8-android-x86 adb push frida-server-12.9.8-and ...
- vue项目打包配置多个测试环境与生产环境,用npm命令打出不同的资源包。
1.找到package.json文件,找到script节点.再新增一个新的脚本命令 test 2.修改prod.env.js配置文件,npm_lifecycle_event代表返回当前执行的脚本名称, ...
- SpringBoot整合Actuator进行健康监控
一.Actuator介绍 SpringBoot自带监控功能Actuator,通过 restful api 请求来监管.审计.收集应用的运行情况,可以帮助实现对程序内部运行情况监控,比如监控状况.Bea ...
- 如何理解Vue.js中的ref及$ref,$
1.vue官方文档 首先我们来看一下vue官方是怎么解释的 好了,我知道很多刚接触的vue的小白其实都不太看的懂官方文档在讲什么,下面我用自己的话翻译一下. 2.ref以及$ref 通过 ref 标注 ...
- N皇后问题的二进制优化详细思路
题目啊常规解法(DFS)在此就不赘述了... 直接进入正题. 众所周知,N皇后是NP完全类问题,n稍微大了点求解过程就会变得很长. 算法方面很难再有质的效率突破,但这不妨在其他细节上下下功夫. 揆诸常 ...
- Netty之旅二:口口相传的高性能Netty到底是什么?
高清思维导图原件(xmind/pdf/jpg)可以关注公众号:一枝花算不算浪漫 回复netty01即可. 前言 上一篇文章讲了NIO相关的知识点,相比于传统IO,NIO已经做得很优雅了,为什么我们还要 ...
- 曹工改bug:cpu狂飙,old gc频繁,线程神秘死亡连环案件调查报告
曹工改bug:cpu狂飙,old gc频繁,线程神秘死亡连环案件调查报告 前言 前两天,访问开发环境上一个java服务,发现一直转圈圈,因为我开着fiddler,可以看到的现象是,接口一直没返回:本来 ...