1.Spark Graph简介

GraphX 是 Spark 一个组件,专门用来表示图以及进行图的并行计算。GraphX 通过重新定义了图的抽象概念来拓展了 RDD: 定向多图,其属性附加到每个顶点和边。为了支持图计算, GraphX 公开了一系列基本运算符(比如:mapVertices、mapEdges、subgraph)以及优化后的 Pregel API 变种。此外,还包含越来越多的图算法和构建器,以简化图形分析任务。GraphX在图顶点信息和边信息存储上做了优化,使得图计算框架性能相对于原生RDD实现得以较大提升,接近或到达 GraphLab 等专业图计算平台的性能。GraphX最大的贡献是,在Spark之上提供一栈式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

图计算的模式

基本图计算是基于BSP的模式,BSP即整体同步并行,它将计算分成一系列超步的迭代。从纵向上看,它是一个串行模式,而从横向上看,它是一个并行的模式,每两个超步之间设置一个栅栏(barrier),即整体同步点,确定所有并行的计算都完成后再启动下一轮超步。

每一个超步包含三部分内容:

计算compute:每一个processor利用上一个超步传过来的消息和本地的数据进行本地计算

消息传递:每一个processor计算完毕后,将消息传递个与之关联的其它processors

整体同步点:用于整体同步,确定所有的计算和消息传递都进行完毕后,进入下一个超步

2.来看一个例子

图描述

## 顶点数据
1, "SFO"
2, "ORD"
3, "DFW"
## 边数据
1, 2,1800
2, 3, 800
3, 1, 1400

计算所有的顶点,所有的边,所有的triplets,顶点数,边数,顶点距离大于1000的有那几个,按顶点的距离排序,降序输出

代码实现

package com.hoult.Streaming.work

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.graphx.{Edge, Graph, VertexId}
import org.apache.spark.rdd.RDD object GraphDemo {
def main(args: Array[String]): Unit = {
// 初始化
val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]")
val sc = new SparkContext(conf)
sc.setLogLevel("warn") //初始化数据
val vertexArray: Array[(Long, String)] = Array((1L, "SFO"), (2L, "ORD"), (3L, "DFW"))
val edgeArray: Array[Edge[Int]] = Array(
Edge(1L, 2L, 1800),
Edge(2L, 3L, 800),
Edge(3L, 1L, 1400)
) //构造vertexRDD和edgeRDD
val vertexRDD: RDD[(VertexId, String)] = sc.makeRDD(vertexArray)
val edgeRDD: RDD[Edge[Int]] = sc.makeRDD(edgeArray) //构造图
val graph: Graph[String, Int] = Graph(vertexRDD, edgeRDD) //所有的顶点
graph.vertices.foreach(println) //所有的边
graph.edges.foreach(println) //所有的triplets
graph.triplets.foreach(println) //求顶点数
val vertexCnt = graph.vertices.count()
println(s"顶点数:$vertexCnt") //求边数
val edgeCnt = graph.edges.count()
println(s"边数:$edgeCnt") //机场距离大于1000的
graph.edges.filter(_.attr > 1000).foreach(println) //按所有机场之间的距离排序(降序)
graph.edges.sortBy(-_.attr).collect().foreach(println)
}
}

输出结果

3.图的一些相关知识

例子是demo级别的,实际生产环境下,如果使用到必然比这个复杂很多,但是总的来说,一定场景才会使用到吧,要注意图计算情况下,要注意缓存数据,RDD默认不存储于内存中,所以可以尽量使用显示缓存,迭代计算中,为了获得最佳性能,也可能需要取消缓存。默认情况下,缓存的RDD和图保存在内存中,直到内存压力迫使它们按照LRU【最近最少使用页面交换算法】逐渐从内存中移除。对于迭代计算,先前的中间结果将填满内存。经过它们最终被移除内存,但存储在内存中的不必要数据将减慢垃圾回收速度。因此,一旦不再需要中间结果,取消缓存中间结果将更加有效。这涉及在每次迭代中实现缓存图或RDD,取消缓存其他所有数据集,并仅在以后的迭代中使用实现的数据集。但是,由于图是有多个RDD组成的,因此很难正确地取消持久化。对于迭代计算,建议使用Pregel API,它可以正确地保留中间结果。

吴邪,小三爷,混迹于后台,大数据,人工智能领域的小菜鸟。

更多请关注

大数据开发-Spark-初识Spark-Graph && 快速入门的更多相关文章

  1. 大数据开发实战:Spark Streaming流计算开发

    1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数 ...

  2. 大数据开发,Hadoop Spark太重?你试试esProc SPL

    摘要:由于目标和现实的错位,对很多用户来讲,Hadoop成了一个在技术.应用和成本上都很沉重的产品. 本文分享自华为云社区<Hadoop Spark太重,esProc SPL很轻>,作者: ...

  3. Hadoop大数据学习视频教程 大数据hadoop运维之hadoop快速入门视频课程

    Hadoop是一个能够对大量数据进行分布式处理的软件框架. Hadoop 以一种可靠.高效.可伸缩的方式进行数据处理适用人群有一定Java基础的学生或工作者课程简介 Hadoop是一个能够对大量数据进 ...

  4. 大数据为什么要选择Spark

    大数据为什么要选择Spark Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析. Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部 ...

  5. 老李分享:大数据框架Hadoop和Spark的异同 1

    老李分享:大数据框架Hadoop和Spark的异同   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨 ...

  6. Spark—初识spark

    Spark--初识spark 一.Spark背景 1)MapReduce局限性 <1>仅支持Map和Reduce两种操作,提供给用户的只有这两种操作 <2>处理效率低效 Map ...

  7. 详解Kafka: 大数据开发最火的核心技术

    详解Kafka: 大数据开发最火的核心技术   架构师技术联盟 2019-06-10 09:23:51 本文共3268个字,预计阅读需要9分钟. 广告 大数据时代来临,如果你还不知道Kafka那你就真 ...

  8. 从 Airflow 到 Apache DolphinScheduler,有赞大数据开发平台的调度系统演进

    点击上方 蓝字关注我们 作者 | 宋哲琦 ✎ 编 者 按 在不久前的 Apache  DolphinScheduler Meetup 2021 上,有赞大数据开发平台负责人 宋哲琦 带来了平台调度系统 ...

  9. 大数据开发实战:HDFS和MapReduce优缺点分析

    一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子 ...

  10. 大数据开发实战:Stream SQL实时开发一

    1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.F ...

随机推荐

  1. 【Linux】linux的所有文件分类解析

    今天看书的时候,无意间看到/dev/文件夹,以前没注意,今天去看了下发现,很多文件的开头文件属性都是一些不怎么见到的 常见的是   -     这个是代表文件,可以vim编辑的 d     这个是代表 ...

  2. 【Oracle】修改oracle中SGA区的大小

    1.备份数据库: 2.关机,拔下电源和各种连接线,抽出机箱,打开机箱上盖,增加内存: 3.完成后按原样将各个部件及连接线恢复好,电开机,系统正常运行: 4.进入系统查看,发现内存已经顺利安装: 5.修 ...

  3. mysql InnoDB架构

    1.InnoDB的磁盘结构 1)系统表空间 2)用户表空间 3)rodolog 文件组 4)磁盘文件逻辑结构 文件->段->区->页->行 InnoDB对数据的存取是以页为单位 ...

  4. vue+element-ui:table表格中的slot 、formatter属性

    slot 插槽,table中表示该行内容以自定义方式展示 :formatter 方法,用来格式化内容 Function(row, column, cellValue, index) html < ...

  5. Qt 自动化测试Test cutedriver

    示例 https://github.com/nomovok-opensource/cutedriver-examples CuteDriver examples This repository con ...

  6. git本地检出远程分支

    场景:本地分支被误物理删除,想要重新将自己的分支代码从远程拉取下来.(此时取的是最后一次git push上去的分支代码) 1.与远程仓库重新建立关系 1 git clone git@gitlab.名称 ...

  7. CF1190B

    扯在前面 我们老师刚讲过的题目,很考验思维,本蒟蒻WA了十发才过,然后看到题解里只是指出了特殊情况没多解释,可能有人看不懂,特来分享一下 首先题目就很有意思,思考的过程也很有趣,想把所有情况思考全思考 ...

  8. loj10007线段

    题目描述 数轴上有 n 条线段,选取其中 k 条线段使得这 k 条线段两两没有重合部分,问 k 最大为多少. 输入格式 第一行为一个正整数 n: 在接下来的 n 行中,每行有 2 个数 a_i,b_i ...

  9. SpringMVC听课笔记(七:Restful CRUD)

    这章貌似没有什么可讲的,可以看GitHub工程代码: https://github.com/heyboom/SpringMVC_Rest_CRUD

  10. Docker+Prometheus+Alertmanager+Webhook钉钉告警

    Docker+Prometheus+Alertmanager+Webhook钉钉告警 1.环境部署 1.1 二进制部署 1.2 docker部署 1.2.1 webhook 1.2.2 alertma ...