1.Spark Graph简介

GraphX 是 Spark 一个组件,专门用来表示图以及进行图的并行计算。GraphX 通过重新定义了图的抽象概念来拓展了 RDD: 定向多图,其属性附加到每个顶点和边。为了支持图计算, GraphX 公开了一系列基本运算符(比如:mapVertices、mapEdges、subgraph)以及优化后的 Pregel API 变种。此外,还包含越来越多的图算法和构建器,以简化图形分析任务。GraphX在图顶点信息和边信息存储上做了优化,使得图计算框架性能相对于原生RDD实现得以较大提升,接近或到达 GraphLab 等专业图计算平台的性能。GraphX最大的贡献是,在Spark之上提供一栈式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

图计算的模式

基本图计算是基于BSP的模式,BSP即整体同步并行,它将计算分成一系列超步的迭代。从纵向上看,它是一个串行模式,而从横向上看,它是一个并行的模式,每两个超步之间设置一个栅栏(barrier),即整体同步点,确定所有并行的计算都完成后再启动下一轮超步。

每一个超步包含三部分内容:

计算compute:每一个processor利用上一个超步传过来的消息和本地的数据进行本地计算

消息传递:每一个processor计算完毕后,将消息传递个与之关联的其它processors

整体同步点:用于整体同步,确定所有的计算和消息传递都进行完毕后,进入下一个超步

2.来看一个例子

图描述

## 顶点数据
1, "SFO"
2, "ORD"
3, "DFW"
## 边数据
1, 2,1800
2, 3, 800
3, 1, 1400

计算所有的顶点,所有的边,所有的triplets,顶点数,边数,顶点距离大于1000的有那几个,按顶点的距离排序,降序输出

代码实现

package com.hoult.Streaming.work

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.graphx.{Edge, Graph, VertexId}
import org.apache.spark.rdd.RDD object GraphDemo {
def main(args: Array[String]): Unit = {
// 初始化
val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]")
val sc = new SparkContext(conf)
sc.setLogLevel("warn") //初始化数据
val vertexArray: Array[(Long, String)] = Array((1L, "SFO"), (2L, "ORD"), (3L, "DFW"))
val edgeArray: Array[Edge[Int]] = Array(
Edge(1L, 2L, 1800),
Edge(2L, 3L, 800),
Edge(3L, 1L, 1400)
) //构造vertexRDD和edgeRDD
val vertexRDD: RDD[(VertexId, String)] = sc.makeRDD(vertexArray)
val edgeRDD: RDD[Edge[Int]] = sc.makeRDD(edgeArray) //构造图
val graph: Graph[String, Int] = Graph(vertexRDD, edgeRDD) //所有的顶点
graph.vertices.foreach(println) //所有的边
graph.edges.foreach(println) //所有的triplets
graph.triplets.foreach(println) //求顶点数
val vertexCnt = graph.vertices.count()
println(s"顶点数:$vertexCnt") //求边数
val edgeCnt = graph.edges.count()
println(s"边数:$edgeCnt") //机场距离大于1000的
graph.edges.filter(_.attr > 1000).foreach(println) //按所有机场之间的距离排序(降序)
graph.edges.sortBy(-_.attr).collect().foreach(println)
}
}

输出结果

3.图的一些相关知识

例子是demo级别的,实际生产环境下,如果使用到必然比这个复杂很多,但是总的来说,一定场景才会使用到吧,要注意图计算情况下,要注意缓存数据,RDD默认不存储于内存中,所以可以尽量使用显示缓存,迭代计算中,为了获得最佳性能,也可能需要取消缓存。默认情况下,缓存的RDD和图保存在内存中,直到内存压力迫使它们按照LRU【最近最少使用页面交换算法】逐渐从内存中移除。对于迭代计算,先前的中间结果将填满内存。经过它们最终被移除内存,但存储在内存中的不必要数据将减慢垃圾回收速度。因此,一旦不再需要中间结果,取消缓存中间结果将更加有效。这涉及在每次迭代中实现缓存图或RDD,取消缓存其他所有数据集,并仅在以后的迭代中使用实现的数据集。但是,由于图是有多个RDD组成的,因此很难正确地取消持久化。对于迭代计算,建议使用Pregel API,它可以正确地保留中间结果。

吴邪,小三爷,混迹于后台,大数据,人工智能领域的小菜鸟。

更多请关注

大数据开发-Spark-初识Spark-Graph && 快速入门的更多相关文章

  1. 大数据开发实战:Spark Streaming流计算开发

    1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数 ...

  2. 大数据开发,Hadoop Spark太重?你试试esProc SPL

    摘要:由于目标和现实的错位,对很多用户来讲,Hadoop成了一个在技术.应用和成本上都很沉重的产品. 本文分享自华为云社区<Hadoop Spark太重,esProc SPL很轻>,作者: ...

  3. Hadoop大数据学习视频教程 大数据hadoop运维之hadoop快速入门视频课程

    Hadoop是一个能够对大量数据进行分布式处理的软件框架. Hadoop 以一种可靠.高效.可伸缩的方式进行数据处理适用人群有一定Java基础的学生或工作者课程简介 Hadoop是一个能够对大量数据进 ...

  4. 大数据为什么要选择Spark

    大数据为什么要选择Spark Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析. Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部 ...

  5. 老李分享:大数据框架Hadoop和Spark的异同 1

    老李分享:大数据框架Hadoop和Spark的异同   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨 ...

  6. Spark—初识spark

    Spark--初识spark 一.Spark背景 1)MapReduce局限性 <1>仅支持Map和Reduce两种操作,提供给用户的只有这两种操作 <2>处理效率低效 Map ...

  7. 详解Kafka: 大数据开发最火的核心技术

    详解Kafka: 大数据开发最火的核心技术   架构师技术联盟 2019-06-10 09:23:51 本文共3268个字,预计阅读需要9分钟. 广告 大数据时代来临,如果你还不知道Kafka那你就真 ...

  8. 从 Airflow 到 Apache DolphinScheduler,有赞大数据开发平台的调度系统演进

    点击上方 蓝字关注我们 作者 | 宋哲琦 ✎ 编 者 按 在不久前的 Apache  DolphinScheduler Meetup 2021 上,有赞大数据开发平台负责人 宋哲琦 带来了平台调度系统 ...

  9. 大数据开发实战:HDFS和MapReduce优缺点分析

    一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子 ...

  10. 大数据开发实战:Stream SQL实时开发一

    1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.F ...

随机推荐

  1. select 里面带的值居然是估算的?

    mysql> set profiling=1;Query OK, 0 rows affected, 1 warning (0.07 sec) mysql> select count(1) ...

  2. SAP GUI用颜色区分不同的系统

    对于经常打开多个窗口的SAP用户,有时候可能同时登录了生产机.测试机和开发机,为了避免误操作,比如在测试要执行的操作,结果在生产机做了,结果可想而知. 虽然可以通过右下角查看再去判断,但是总是没有通过 ...

  3. 用SAP浏览网页

    在SAP里,通过两个类就可以做一个简单的,嵌入sap里的网页.这两个类就是 1. cl_gui_custom_container 这个类是自定义屏幕里用得,也就是画一个container,在这个容器中 ...

  4. 第一章:起步(python环境搭建)

    Python 环境搭建 学习python的第一步,就是要学习python开发环境的配置,在配置好python开发环境后,你需要再安装一款比较趁手的编辑器,事实上,python解释器本身就可以进行一些编 ...

  5. Java中的Date类型无法赋值给数据库的datetime类型

    因为Java中new Date()的结果是"Thu Aug 27 19:03:54 CST 2020",而mysql中的datetime不接受这样的日期格式,插入数据会报错. 解决 ...

  6. Flask之路由系统

    路由系统 路由的两种写法 1.第一种方法: def index(): return render_template('index.html') app.add_url_rule('/index', ' ...

  7. ESPNet/ESPNetV2:空洞卷积金字塔 | 轻量级网络

    ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高.另外,HFF的 ...

  8. Python+Selenium+Unittest实现PO模式web自动化框架(6)

    1.TestCases目录下的模块 TestCases目录下是存放测试用例的目录. TestCases目录下的测试用例采用unittest框架来构建. 例如:登录功能的测试用例.(test_1_log ...

  9. NAT模式、路由模式、桥接模式的区别

    NAT模式 NAT模式概述 NAT是"Network Address Translation"的缩写,中文意思是"网络地址转换",它允许一个整体机构以一个公用I ...

  10. Intellij idea 报错:Error : java 不支持发行版本5

    保证下面几个地方编译版本一致: 分两步: 第一步,进入Project Structure中设置Project JDK 以及Project Level ,高于JDK5版本 第二步,进入设置中将项目的JD ...