Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)

Total Submission(s): 1165    Accepted Submission(s): 655


Problem Description
Zu Chongzhi (429–500) was a prominent Chinese mathematician and astronomer during the Liu Song and Southern Qi Dynasties. Zu calculated the value ofπ to the precision of six decimal places and for a thousand years thereafter no subsequent mathematician computed
a value this precise. Zu calculated one year as 365.24281481 days, which is very close to 365.24219878 days as we know today. He also worked on deducing the formula for the volume of a sphere. 

It is said in some legend story books that when Zu was a little boy, he liked mathematical games. One day, his father gave him some wood sticks as toys. Zu Chongzhi found a interesting problem using them. He wanted to make some triangles by those sticks, and
he wanted the total area of all triangles he made to be as large as possible. The rules were :

1) A triangle could only consist of 3 sticks.

2) A triangle's vertexes must be end points of sticks. A triangle's vertex couldn't be in the middle of a stick.

3) Zu didn't have to use all sticks.

Unfortunately, Zu didn't solve that problem because it was an algorithm problem rather than a mathematical problem. You can't solve that problem without a computer if there are too many sticks. So please bring your computer and go back to Zu's time to help
him so that maybe you can change the history.
 

Input
There are no more than 10 test cases. For each case:

The first line is an integer N(3 <= N<= 12), indicating the number of sticks Zu Chongzhi had got. The second line contains N integers, meaning the length of N sticks. The length of a stick is no more than 100. The input ends with N = 0.
 

Output
For each test case, output the maximum total area of triangles Zu could make. Round the result to 2 digits after decimal point. If Zu couldn't make any triangle, print 0.00 .
 

Sample Input

3
1 1 20
7
3 4 5 3 4 5 90
0
 

Sample Output

0.00
13.64
 

这题可以用状压dp做,用dp[state]表示该状态下组成的木棒的最大面积。那么我们对木棒数大于等于3的状态,可以加一个没有用过的木棒,然后枚举已经存在的两根木棒,把它们提出来和这根木棒结合,那么状态转移方程就是dp[state2]=max(dp[state2],dp[state1  ]+mianji(a[i],a[j],a[k]  )  );

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
double a[20];
double dp[10000];
int wei[20],tot,yigeshu;
void zhuanhuan(int state)
{
int i,j;
tot=0;
yigeshu=0;
while(state){
wei[++tot]=state%2;
if(state&1)yigeshu++;
state>>=1;
}
} double mianji(double a,double b,double c)
{
double d[5];
d[1]=a;d[2]=b;d[3]=c;
sort(d+1,d+4);
if(d[1]+d[2]<=d[3])return 0;
double p=(a+b+c)/2;
return sqrt(p*(p-a)*(p-b)*(p-c));
} double jisuan(int wei[])
{
int i,j;
int num=0;
double c[10];
for(i=1;i<=tot;i++){
if(wei[i]){
c[++num]=a[i];
}
}
sort(c+1,c+4);
return mianji(c[1],c[2],c[3]);
} int main()
{
int n,m,i,j,state,state1,state2,k;
while(scanf("%d",&n)!=EOF && n!=0)
{
for(i=1;i<=n;i++){
scanf("%lf",&a[i]);
} memset(dp,0,sizeof(dp));
for(state=1;state<=( (1<<n)-1 );state++ ){
zhuanhuan(state);
if(yigeshu==1 || yigeshu==2){
dp[state]=0;continue;
}
if(yigeshu==3){
dp[state]=jisuan(wei);
}
for(i=1;i<=n;i++){
if( (state&(1<<(i-1)) )==0 ){
state2=( state|(1<<(i-1)) );
for(j=1;j<tot;j++){
for(k=j+1;k<=tot;k++){
if(wei[j] && wei[k]){
state1=(state^(1<<(j-1) ) );
state1=(state1^(1<<(k-1) ) );
dp[state2]=max(dp[state2],dp[state1 ]+mianji(a[i],a[j],a[k] ) );
}
}
}
}
}
}
double maxnum=0;
for(state=1;state<=( (1<<n)-1 );state++ ){
maxnum=max(maxnum,dp[state]);
}
printf("%.2f\n",maxnum);
}
return 0;
}

hdu5135 Little Zu Chongzhi's Triangles的更多相关文章

  1. Little Zu Chongzhi's Triangles

    Little Zu Chongzhi's Triangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 ...

  2. [HDU 5135] Little Zu Chongzhi's Triangles (dfs暴搜)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5135 题目大意:给你n条边,选出若干条边,组成若干个三角形,使得面积和最大.输出最大的面积和. 先将边 ...

  3. UVALive 7077 - Little Zu Chongzhi's Triangles(暴力)

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  4. hdu 5135 Little Zu Chongzhi's Triangles

    http://acm.hdu.edu.cn/showproblem.php?pid=5135 题意:给你N个木棍的长度,然后让你组成三角形,问你组成的三角形的和最大是多少? 思路:先求出可以组成的所有 ...

  5. UVALive 7077 Little Zu Chongzhi's Triangles (有序序列和三角形的关系)

    这个题--我上来就给读错了,我以为最后是一个三角形,一条边可以由多个小棒组成,所以想到了状态压缩各种各样的东西,最后成功了--结果发现样例过不了,三条黑线就在我的脑袋上挂着,改正了以后我发现N非常小, ...

  6. HDU5131-Song Jiang's rank list HDU5135-Little Zu Chongzhi's Triangles(大佬写的)

    Song Jiang's rank list Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java ...

  7. URAL 7077 Little Zu Chongzhi's Triangles(14广州I)

    题目传送门 题意:有n根木棍,三根可能能够构成三角形,选出最多的三角形,问最大面积 分析:看到这个数据范围应该想到状压DP,这次我想到了.0010101的状态中,1表示第i根木棍选择,0表示没选,每一 ...

  8. HDU 5135.Little Zu Chongzhi's Triangles-字符串 (2014ACM/ICPC亚洲区广州站-重现赛)

    Little Zu Chongzhi's Triangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 ...

  9. HDU5135 dfs搜索 枚举种数

    Little Zu Chongzhi's Triangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 ...

随机推荐

  1. 【Java基础】反射

    反射 反射的概述 反射(Reflection)是被视为动态语言的关键,反射机制允许程序在执行期借助 Reflection API 取得任何类的内部信息,并能直接操作任意对象的内部属性和方法. 加载完类 ...

  2. LeetCode109 将有序链表转为二叉搜索树

    给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: [-10 ...

  3. LeetCode53 最大子序列问题

    题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和.     示例:     输入: [-2,1,-3,4,-1,2,1,-5,4],   ...

  4. 最全的HashMap源码解析!

    HashMap源码解析 HashMap采用键值对形式的存储结构,每个key对应唯一的value,查询和修改的速度很快,能到到O(1)的平均复杂度.他是非线程安全的,且不能保证元素的存储顺序. 他的关系 ...

  5. PAT天梯赛练习 L3-003 社交集群 (30分) DFS搜索

    题目分析: 一共有N个编号为1~1000的人,以及一共有编号为1~1000种不同的兴趣,在题目给出1~N编号的人员每个人喜欢的兴趣的id后,要求统计出不同的人员集合的个数以及每个人员几个的人数从大到小 ...

  6. 使用nodejs和express搭建http web服务

    目录 简介 使用nodejs搭建HTTP web服务 请求nodejs服务 第三方lib请求post 获取http请求的正文 Express和使用express搭建http web服务 express ...

  7. CentOS | python3.7安装指南

    前言: centos系统本身默认安装有python2.x,版本x根据不同版本系统有所不同 可通过 python --V 或 python --version 查看系统自带的python版本 有一些系统 ...

  8. 【Spring】XML方式实现(无参构造 有参构造)和注解方式实现 IoC

    文章目录 Spring IoC的实现方式 XML方式实现 通过无参构造方法来创建 1.编写一个User实体类 2.编写我们的spring文件 3.测试类 UserTest.java 4.测试结果 通过 ...

  9. 前端面试准备笔记之JavaScript(02)

    01. this的典型应用场景 this在各个场景中取什么值,是在函数执行的时候确认的,不是在定义的时候确认的. 普通函数执行 返回window function fn1() { console.lo ...

  10. Netty之ChannelHandler

    一.概述 handler是控制socket io的各个生命周期的业务实现,netty实现了很多种协议所以有很多handler类,这儿主要关注Handler的设计.作用以及使用方法. 二.Channel ...