Happy 2006 POJ - 2773 容斥原理+二分
题意:
找到第k个与m互质的数
题解:
容斥原理求区间(1到r)里面跟n互质的个数时间复杂度O(sqrt(n))…
二分复杂度也是O(log(n))
容斥原理+二分这个r
代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<queue>
7 using namespace std;
8 typedef long long ll;
9 const int maxn=100000;
10 int v[maxn],index;
11 void oula(int n) //获取n的所有质因数
12 {
13 index=0;
14 for(int i=2; i<=sqrt(n); ++i)
15 {
16 if(n%i==0)
17 {
18 v[index++]=i;
19 n/=i;
20 while(n%i==0)
21 n/=i;
22 }
23 }
24 if(n>1)
25 v[index++]=n;
26 }
27 int get_result(int n)//容斥原理
28 {
29 int ans=0;
30 for(int i=1; i< (1<<index) ; i++)
31 {
32 int ones=0,mult=1;
33 for(int j=0; j<index; j++)
34 {
35 if(i & (1<<j))
36 {
37 ones++;
38 mult*=v[j];
39 }
40 }
41 if(ones&1)//奇数加,偶数减
42 ans+= n/mult;
43 else
44 ans-= n/mult;
45 }
46 return n-ans;
47 }
48 int main()
49 {
50 int m,k;
51 while(~scanf("%d%d",&m,&k))
52 {
53 oula(m);
54 int l=1,mid,r=1000000000,ans=-1;
55 while(l<=r)
56 {
57 mid=(l+r)>>1;
58 if(get_result(mid)>=k)
59 {
60 ans=mid;
61 r=mid-1;
62 }
63 else l=mid+1;
64 }
65 printf("%d\n",ans);
66 }
67 return 0;
68 }
Happy 2006 POJ - 2773 容斥原理+二分的更多相关文章
- POJ 2773 Happy 2006#素数筛选+容斥原理+二分
http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...
- poj 2773(容斥原理)
容斥原理入门题吧. Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9798 Accepted: 3 ...
- poj 2318 叉积+二分
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13262 Accepted: 6412 Description ...
- poj 2049(二分+spfa判负环)
poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- poj 2773 Happy 2006 - 二分答案 - 容斥原理
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11161 Accepted: 3893 Description Two ...
- [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)
题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...
- poj 2773 Happy 2006 容斥原理+二分
题目链接 容斥原理求第k个与n互质的数. #include <iostream> #include <vector> #include <cstdio> #incl ...
- POJ 2773 Happy 2006(容斥原理+二分)
Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10827 Accepted: 3764 Descr ...
随机推荐
- Flutter 应用入门:路由管理
路由(Route)在移动开发中通常指页面(Page),这跟web开发中单页应用的Route概念意义是相同的,Route在Android中通常指一个Activity,在iOS中指一个ViewContro ...
- SpringCloud Alibaba Nacos服务注册与配置管理
Nacos SpringCloud Alibaba Nacos是一个狗抑郁构建云原生应用的动态服务发现.配置管理和服务管理平台. Nacos:Dynamic Naming and Configurat ...
- Selenium WebDriver 8大定位方式
Selenium WebDriver 8大定位方式: driver.find_element_by_id() driver.find_element_by_name() driver.find_ele ...
- Ubuntu 18.04.4 LTS 更换国内系统源
Ubuntu 18.04.4 LTS 更换国内系统源 1.1) 好习惯先做备份在干活: mv /etc/apt/sources.list /etc/apt/sources.list.bak 1.2) ...
- linux搭建简单samba服务器
1.安装需要的软体 yum install -y samba samba-client samba-common 2.创建samba需要的本地用户,创建samba服务使用的目录 Linux系统文件的读 ...
- python异步回调顺序?是否加锁?
话不多说,直接上代码: import time from functools import partial from concurrent.futures.process import Process ...
- 基于.NET Core的优秀开源项目合集
开源项目非常适合入门,并且可以作为体系结构参考的好资源, GitHub中有几个开源的.NET Core项目,这些项目将帮助您使用不同类型的体系结构和编码模式来深入学习 .NET Core技术, 本文列 ...
- 同步与异步 Python 有何不同?
你是否听到人们说过,异步 Python 代码比"普通(或同步)Python 代码更快?果真是那样吗? 1 "同步"和"异步"是什么意思? Web 应用 ...
- MySQL高可用HA——keepalived配置
0. Keepalived介绍 Keepalived是基于VRRP(Virtual Router Redundancy Protocol,虚拟路由器冗余协议)协议的一款高可用软件.Keepaili ...
- 中央事件总线 事件驱动架构(EDA) 解析事件总线的4种实现方式
事件驱动架构(EDA)https://mp.weixin.qq.com/s/nA8XFD2Rx_7qA_LxltGGHw https://mp.weixin.qq.com/s/cD3auglgKzOb ...