P3803 [模板] 多项式乘法 (FFT)
Rt
注意len要为2的幂
#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0); inline int read()
{
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m;
struct Complex {
double x, y;
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator + (const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator - (const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator * (const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
}; void change(Complex y[], int len)
{
int i, j, k;
for(i = 1, j = len / 2; i < len - 1; i++)
{
if(i < j) swap(y[i], y[j]);
k = len / 2;
while(j >= k)
{
j -= k;
k /= 2;
}
if(j < k) j += k;
}
} void fft(Complex y[], int len, int on)
{
change(y, len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for(int j = 0; j < len; j += h)
{
Complex w(1, 0);
for(int k = j; k < j + h / 2; k++)
{
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
} if(on == -1)
for(int i = 0; i < len; i++)
y[i].x /= len;
} Complex x1[4000005], x2[4000005]; int main()
{
scanf("%d%d", &n, &m);
for(int i = 0; i <= n; i++) {
int u; u = read();
x1[i] = Complex(1.0 * u, 0);
}
for(int i = 0; i <= m; i++) {
int u; u = read();
x2[i] = Complex(1.0 * u, 0);
} int len = 1;
while(len <= n + m) len <<= 1; fft(x1, len, 1);
fft(x2, len, 1);
for(int i = 0; i <= len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1); for(int i = 0; i <= n + m; i++) printf("%d ", (int)(x1[i].x + 0.5));
return 0;
}
P3803 [模板] 多项式乘法 (FFT)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- [uoj#34] [洛谷P3803] 多项式乘法(FFT)
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...
- @总结 - 1@ 多项式乘法 —— FFT
目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- 【模板】多项式乘法(FFT)
题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系 ...
- 【Luogu3808】多项式乘法FFT(FFT)
题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include&l ...
随机推荐
- js 判断用户是手机端还是电脑端访问
通过userAgent 判断,网页可以直接使用 navigation对象 node端 可以通过请求头的 ctx.request.header['user-agent'] const browser = ...
- WIN7系统没有USB驱动和以太网驱动如何操作
| 欢迎关注个人公众号 zclinux_note 第一时间获取关于linux使用的技巧.探索Linux的奥秘 | 今天在单位安装了一台win7纯净版,但是安装完成后发现usb没有反应,插上网 ...
- 【Linux】iptables的内核模块问题大坑!
系统环境 CentOS 6.5 今天本来可以平静的度过一天,正品味着下午茶的美好,突然接到防火墙iptables的报警. 进入到服务器中,执行下面的命令查看,结果报错 /etc/init.d/ipta ...
- Kubernetes CoreDNS 状态是 CrashLoopBackOff 报错
查看状态的时候,遇见coredns出现crashlookbackoff,首先我们来进行排错,不管是什么原因,查看coredns的详细信息,以及logs [root@k8s-master coredns ...
- SQL Server management studio使用sa连接时报错与伺服器的连接已成功,但在登入程序是发生错误
使用Sql Server management studio的sa用户连接数据库时,报如下错误 解决方法: 1.使用windows验证登录 2.右键点击连接,点击属性,点击安全性,选择混合验证 3.重 ...
- Redis中哈希分布不均匀该怎么办
前言 Redis 是一个键值对数据库,其键是通过哈希进行存储的.整个 Redis 可以认为是一个外层哈希,之所以称为外层哈希,是因为 Redis 内部也提供了一种哈希类型,这个可以称之为内部哈希.当我 ...
- JVM 判断对象已死,实践验证GC回收
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 提升自身价值有多重要? 经过了风风雨雨,看过了男男女女.时间经过的岁月就没有永恒不变 ...
- STM32驱动LCD原理
TFTLCD即薄膜晶体管液晶显示器.它与无源TN-LCD.STN-LCD的简单矩阵不同,它在液晶显示屏的每一个像素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性 ...
- SpringBoot单元测试的两种形式
@ 目录 前言 demo环境 springbootTest Junit 总结 前言 最近公司要求2021年所有的项目代码单元测试覆盖率要达到90%,作为刚毕业的小白来说这简直就是噩梦啊,springb ...
- C# Twain协议调用扫描仪,设置多图像输出模式(Multi image output)
Twain 随着扫描仪.数码相机和其他图像采集设备的引入,用户热切地发现了将图像整合到他们的文档和其他工作中的价值.然而,支持这种光栅数据的显示和操作成本很高,应用程序开发人员需要创建用户界面并内置设 ...