代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification

往期精彩:

利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料)

利用RNN进行中文文本分类(数据集是复旦中文语料)

利用CNN进行中文文本分类(数据集是复旦中文语料)

利用transformer进行中文文本分类(数据集是复旦中文语料)

基于tensorflow的中文文本分类

数据集:复旦中文语料,包含20类
数据集下载地址:https://www.kesci.com/mw/dataset/5d3a9c86cf76a600360edd04/content
数据集下载好之后将其放置在data文件夹下;
修改globalConfig.py中的全局路径为自己项目的路径;
处理后的数据和已训练好保存的模型,在这里可以下载:
链接:https://pan.baidu.com/s/1ZHzO5e__-WFYAYFIt2Kmsg 提取码:vvzy

目录结构:
|--checkpint:保存模型目录
|--|--transformer:transformer模型保存位置;
|--config:配置文件;
|--|--fudanConfig.py:包含训练配置、模型配置、数据集配置;
|--|--globaConfig.py:全局配置文件,主要是全局路径、全局参数等;
|-- data:数据保存位置;
|--|--|--Fudan:复旦数据;
|--|--|--train:训练数据;
|--|--|--answer:测试数据;
|--dataset:创建数据集,对数据进行处理的一些操作;
|--images:结果可视化图片保存位置;
|--models:模型保存文件;
|--process:对原始数据进行处理后的数据;
|--tensorboard:tensorboard可视化文件保存位置,暂时未用到;
|--utils:辅助函数保存位置,包括word2vec训练词向量、评价指标计算、结果可视化等;
|--main.py:主运行文件,选择模型、训练、测试和预测;

初始配置:

  • 词嵌入维度:200
  • 学习率:0.001
  • epoch:50
  • 词汇表大小:6000+2(加2是PAD和UNK)
  • 文本最大长度:600
  • 每多少个step进行验证:100
  • 每多少个step进行存储模型:100

环境:

  • python=>=3.6
  • tensorflow==1.15.0

当前支持的模型:

  • bilstm
  • bilstm+attention
  • textcnn
  • rcnn
  • transformer

说明

数据的输入格式:
(1)分词后去除掉停止词,再对词语进行词频统计,取频数最高的前6000个词语作为词汇表;
(2)像词汇表中加入PAD和UNK,实际上的词汇表的词语总数为6000+2=6002;
(3)当句子长度大于指定的最大长度,进行裁剪,小于最大长度,在句子前面用PAD进行填充;
(4)如果句子中的词语在词汇表中没有出现则用UNK进行代替;
(5)输入到网络中的句子实际上是进行分词后的词语映射的id,比如:
(6)输入的标签是要经过onehot编码的;

"""
"我喜欢上海",
"我喜欢打羽毛球",
"""
词汇表:['我','喜欢','打','上海','羽毛球'],对应映射:[2,3,4,5,6],0对应PAD,1对应UNK 
得到:
[
[0,2,3,5],
[2,3,4,6],
]

python main.py --model transformer --saver_dir checkpoint/transformer --save_png images/transformer  --train  --test  --predict 

参数说明:

  • --model:选择模型,可选[transformer、bilstm、bilstmattn、textcnn、rcnn]
  • --saver_dir:模型保存位置,一般是checkpoint+模型名称
  • --save_png:结果可视化保存位置,一般是images+模型名称
  • --train:是否进行训练,默认为False
  • --test:是否进行测试,默认为False
  • --predict:是否进行预测,默认为False

结果

以transformer为例:
部分训练结果:
2020-11-01T10:43:16.955322, step: 1300, loss: 5.089711, acc: 0.8546,precision: 0.3990, recall: 0.4061, f_beta: 0.3977 *
Epoch: 83
train: step: 1320, loss: 0.023474, acc: 0.9922, recall: 0.8444, precision: 0.8474, f_beta: 0.8457
Epoch: 84
train: step: 1340, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 85
train: step: 1360, loss: 0.000000, acc: 1.0000, recall: 0.5500, precision: 0.5500, f_beta: 0.5500
Epoch: 86
Epoch: 87
train: step: 1380, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 88
train: step: 1400, loss: 0.000000, acc: 1.0000, recall: 0.7000, precision: 0.7000, f_beta: 0.7000
开始验证。。。 2020-11-01T10:44:07.347359, step: 1400, loss: 5.111372, acc: 0.8506,precision: 0.4032, recall: 0.4083, f_beta: 0.3982 *
Epoch: 89
train: step: 1420, loss: 0.000000, acc: 1.0000, recall: 0.5500, precision: 0.5500, f_beta: 0.5500
Epoch: 90
train: step: 1440, loss: 0.000000, acc: 1.0000, recall: 0.5500, precision: 0.5500, f_beta: 0.5500
Epoch: 91
Epoch: 92
train: step: 1460, loss: 0.000000, acc: 1.0000, recall: 0.7000, precision: 0.7000, f_beta: 0.7000
Epoch: 93
train: step: 1480, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 94
train: step: 1500, loss: 0.000000, acc: 1.0000, recall: 0.6000, precision: 0.6000, f_beta: 0.6000
开始验证。。。 2020-11-01T10:44:57.645305, step: 1500, loss: 5.206666, acc: 0.8521,precision: 0.4003, recall: 0.4040, f_beta: 0.3957
Epoch: 95
train: step: 1520, loss: 0.000000, acc: 1.0000, recall: 0.6000, precision: 0.6000, f_beta: 0.6000
Epoch: 96
Epoch: 97
train: step: 1540, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 98
train: step: 1560, loss: 0.000000, acc: 1.0000, recall: 0.7000, precision: 0.7000, f_beta: 0.7000
Epoch: 99
train: step: 1580, loss: 0.000000, acc: 1.0000, recall: 0.8000, precision: 0.8000, f_beta: 0.8000
Epoch: 100
train: step: 1600, loss: 0.000000, acc: 1.0000, recall: 0.5000, precision: 0.5000, f_beta: 0.5000
开始验证。。。 2020-11-01T10:45:47.867190, step: 1600, loss: 5.080955, acc: 0.8566,precision: 0.4087, recall: 0.4131, f_beta: 0.4036 *
<Figure size 1000x600 with 10 Axes>
绘图完成了。。。
开始进行测试。。。
计算Precision, Recall and F1-Score...
precision recall f1-score support Agriculture 0.89 0.90 0.89 1022
Art 0.80 0.95 0.86 742
Communication 0.19 0.26 0.22 27
Computer 0.95 0.94 0.94 1358
Economy 0.86 0.91 0.89 1601
Education 1.00 0.11 0.21 61
Electronics 0.35 0.39 0.37 28
Energy 1.00 0.03 0.06 33
Enviornment 0.88 0.96 0.92 1218
History 0.79 0.48 0.60 468
Law 1.00 0.12 0.21 52
Literature 0.00 0.00 0.00 34
Medical 0.50 0.13 0.21 53
Military 0.33 0.01 0.03 76
Mine 1.00 0.03 0.06 34
Philosophy 1.00 0.04 0.09 45
Politics 0.73 0.91 0.81 1026
Space 0.84 0.86 0.85 642
Sports 0.93 0.91 0.92 1254
Transport 0.33 0.03 0.06 59 accuracy 0.86 9833
macro avg 0.72 0.45 0.46 9833
weighted avg 0.85 0.86 0.84 9833

结果可视化图片如下:

进行预测。。。
开始预测文本的类别。。。
输入的文本是:自动化学报ACTA AUTOMATICA SINICA1997年 第23卷 第4期 Vol.23 No.4 1997一种在线建模方法的研究1)赵希男 粱三龙 潘德惠摘 要 针对一类系统提出了一种通用性...
预测的类别是: Computer
真实的类别是: Computer
================================================
输入的文本是:航空动力学报JOURNAL OF AEROSPACE POWER1999年 第14卷 第1期 VOL.14 No.1 1999变几何涡扇发动机几何调节对性能的影响朱之丽 李 东摘要:本文以高推重比涡扇...
预测的类别是: Space
真实的类别是: Space
================================================
输入的文本是:【 文献号 】1-4242【原文出处】图书馆论坛【原刊地名】广州【原刊期号】199503【原刊页号】13-15【分 类 号】G9【分 类 名】图书馆学、信息科学、资料工作【 作 者 】周坚宇【复印期...
预测的类别是: Sports
真实的类别是: Sports
================================================
输入的文本是:产业与环境INDUSTRY AND ENVIRONMENT1998年 第20卷 第4期 Vol.20 No.4 1998科技期刊采矿——事实与数字引 言本期《产业与环境》中的向前看文章并没有十分详细地...
预测的类别是: Enviornment
真实的类别是: Enviornment
================================================
输入的文本是:环境技术ENVIRONMENTAL TECHNOLOGY1999年 第3期 No.3 1999正弦振动试验中物理计算闫立摘要:本文通过阐述正弦振动试验技术涉及的物理概念、力学原理,编写了较适用的C语言...
预测的类别是: Space
真实的类别是: Enviornment
================================================

下面是一些实现的对比:
transformer

评价指标 precision recall f1-score support
accuracy     0.86 9833
macro avg 0.72 0.45 0.46 9833
weighted avg 0.85 0.86 0.84 9833

bistm

评价指标 precision recall f1-score support
accuracy     0.77 9833
macro avg 0.47 0.40 0.41 9833
weighted avg 0.76 0.77 0.76 9833

bilstmattn

评价指标 precision recall f1-score support
accuracy     0.92 9833
macro avg 0.70 0.64 0.65 9833
weighted avg 0.93 0.92 0.92 9833

textrcnn

评价指标 precision recall f1-score support
accuracy     0.89 9833
macro avg 0.71 0.46 0.48 9833
weighted avg 0.88 0.89 0.87 9833

rcnn
很奇怪,rcnn网络并没有得到有效的训练

评价指标 precision recall f1-score support
accuracy     0.16 9833
macro avg 0.01 0.05 0.02 9833
weighted avg 0.04 0.16 0.05 9833

十分感谢以下仓库,给了自己很多参考:
https://github.com/jiangxinyang227/NLP-Project/tree/master/text_classifier 
https://github.com/gaussic/text-classification-cnn-rnn

基于tensorflow的文本分类总结(数据集是复旦中文语料)的更多相关文章

  1. 利用RNN进行中文文本分类(数据集是复旦中文语料)

    利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词 ...

  2. 利用CNN进行中文文本分类(数据集是复旦中文语料)

    利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用 ...

  3. 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料)

    1.对语料进行分析 基本目录如下: 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为 ...

  4. tensorflow实现基于LSTM的文本分类方法

    tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...

  5. 一文详解如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)

    雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用 ...

  6. Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存

    用pytorch进行文本分类,数据集为keras内置的imdb影评数据(二分类),代码包含六个部分(详见代码) 使用环境: pytorch:1.1.0 cuda:10.0 gpu:RTX2070 (1 ...

  7. 基于weka的文本分类实现

    weka介绍 参见 1)百度百科:http://baike.baidu.com/link?url=V9GKiFxiAoFkaUvPULJ7gK_xoEDnSfUNR1woed0YTmo20Wjo0wY ...

  8. 基于SVMLight的文本分类

    支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本 .非线性及高维模式识别 中表现出许多特有的优势,并能够推广应用到函数拟合等 ...

  9. Python 基于 NLP 的文本分类

    这是前一段时间在做的事情,有些python库需要python3.5以上,所以mac请先升级 brew安装以下就好,然后Preference(comm+',')->Project: Text-Cl ...

随机推荐

  1. 使用 IIS 新建WebService站点供Android访问远程sqlserver数据库

    新增网站 打开IIS控制台,找到服务根目录,右键,新建网站 网站设定 浏览测试 使用刚才生成的默认HelloWorld的服务1页面,记得加上端口号 http://localhost:8090/serv ...

  2. Python-迭代协议-__iter__ __next__ iter next yield

    iter 本质是for循环调用的实质,for循环通过调用这个函数返回可迭代对象生成器形式,开始迭代取值捕获StopIteration错误退出循环 for循环首先找__iter__方法,然后再找 __g ...

  3. Python练习题 037:Project Euler 009:毕达哥拉斯三元组之乘积

    本题来自 Project Euler 第9题:https://projecteuler.net/problem=9 # Project Euler: Problem 9: Special Pythag ...

  4. Trie树【字典树】浅谈

    最近随洛谷日报看了一下Trie树,来写一篇学习笔记. Trie树:支持字符串前缀查询等(目前我就学了这些qwq) 一般题型就是给定一个模式串,几个文本串,询问能够匹配前缀的文本串数量. 首先,来定义下 ...

  5. kalilinux2020.3的安装与一些坑

    1.下载镜像文件.iso kali官方下载太慢,用一些魔法也是不行,这里推荐用国内的下载源. 阿里云: https://mirrors.aliyun.com/kali-images/?spm=a2c6 ...

  6. NOIP提高组2013 D2T3 【华容道】

    某王  老师给我们考了一场noip2013的真题...心态爆炸! 题目大意: 有一个n*m的棋盘,每个格子上都有一个棋子,有些格子上的棋子能够移动(可移动的棋子是固定的),棋盘中有一个格子是空的,仍何 ...

  7. linxu 命令

    top | grep java 统计 java 进程使用的资源比率 nohub java -jar test.war & 后台运行 test.war 程序,标准输出到 test.war 程序目 ...

  8. 虚拟主机和ECS的选择——有的坑你可以不躺,有的钱你可以不花(一)

    一直想做网站,由于最开始虚拟主机有优惠,所以三年前买了虚拟主机,后来一直续费,间歇性使用过,发现很多功能都不行​. 昨天准备买新的,然后想起学生购买有优惠,于是开始了学生认证之旅​. 首先,看一下之前 ...

  9. ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)解决方案

    在Win7下使用MySQL5.6.35创建用户时,提示权限不足,具体解决方案如下: 1 停止mysql服务 net stop mysql 2 打开新的cmd窗口,切换到bin目录,运行如下命令,cmd ...

  10. 【应用程序见解 Application Insights】使用Azure Monitor Application Insights Agent获取Azure VM中监控数据及IIS请求指标等信息

    问题情形 为了使用Application Insights也可以监控Azure VM中的相关性能数据,如CPU, Memory,IIS Reuqest等信息,可以在VM中开始一个一个扩展插件: Azu ...