代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification

往期精彩:

利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料)

利用RNN进行中文文本分类(数据集是复旦中文语料)

利用CNN进行中文文本分类(数据集是复旦中文语料)

利用transformer进行中文文本分类(数据集是复旦中文语料)

基于tensorflow的中文文本分类

数据集:复旦中文语料,包含20类
数据集下载地址:https://www.kesci.com/mw/dataset/5d3a9c86cf76a600360edd04/content
数据集下载好之后将其放置在data文件夹下;
修改globalConfig.py中的全局路径为自己项目的路径;
处理后的数据和已训练好保存的模型,在这里可以下载:
链接:https://pan.baidu.com/s/1ZHzO5e__-WFYAYFIt2Kmsg 提取码:vvzy

目录结构:
|--checkpint:保存模型目录
|--|--transformer:transformer模型保存位置;
|--config:配置文件;
|--|--fudanConfig.py:包含训练配置、模型配置、数据集配置;
|--|--globaConfig.py:全局配置文件,主要是全局路径、全局参数等;
|-- data:数据保存位置;
|--|--|--Fudan:复旦数据;
|--|--|--train:训练数据;
|--|--|--answer:测试数据;
|--dataset:创建数据集,对数据进行处理的一些操作;
|--images:结果可视化图片保存位置;
|--models:模型保存文件;
|--process:对原始数据进行处理后的数据;
|--tensorboard:tensorboard可视化文件保存位置,暂时未用到;
|--utils:辅助函数保存位置,包括word2vec训练词向量、评价指标计算、结果可视化等;
|--main.py:主运行文件,选择模型、训练、测试和预测;

初始配置:

  • 词嵌入维度:200
  • 学习率:0.001
  • epoch:50
  • 词汇表大小:6000+2(加2是PAD和UNK)
  • 文本最大长度:600
  • 每多少个step进行验证:100
  • 每多少个step进行存储模型:100

环境:

  • python=>=3.6
  • tensorflow==1.15.0

当前支持的模型:

  • bilstm
  • bilstm+attention
  • textcnn
  • rcnn
  • transformer

说明

数据的输入格式:
(1)分词后去除掉停止词,再对词语进行词频统计,取频数最高的前6000个词语作为词汇表;
(2)像词汇表中加入PAD和UNK,实际上的词汇表的词语总数为6000+2=6002;
(3)当句子长度大于指定的最大长度,进行裁剪,小于最大长度,在句子前面用PAD进行填充;
(4)如果句子中的词语在词汇表中没有出现则用UNK进行代替;
(5)输入到网络中的句子实际上是进行分词后的词语映射的id,比如:
(6)输入的标签是要经过onehot编码的;

"""
"我喜欢上海",
"我喜欢打羽毛球",
"""
词汇表:['我','喜欢','打','上海','羽毛球'],对应映射:[2,3,4,5,6],0对应PAD,1对应UNK 
得到:
[
[0,2,3,5],
[2,3,4,6],
]

python main.py --model transformer --saver_dir checkpoint/transformer --save_png images/transformer  --train  --test  --predict 

参数说明:

  • --model:选择模型,可选[transformer、bilstm、bilstmattn、textcnn、rcnn]
  • --saver_dir:模型保存位置,一般是checkpoint+模型名称
  • --save_png:结果可视化保存位置,一般是images+模型名称
  • --train:是否进行训练,默认为False
  • --test:是否进行测试,默认为False
  • --predict:是否进行预测,默认为False

结果

以transformer为例:
部分训练结果:
2020-11-01T10:43:16.955322, step: 1300, loss: 5.089711, acc: 0.8546,precision: 0.3990, recall: 0.4061, f_beta: 0.3977 *
Epoch: 83
train: step: 1320, loss: 0.023474, acc: 0.9922, recall: 0.8444, precision: 0.8474, f_beta: 0.8457
Epoch: 84
train: step: 1340, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 85
train: step: 1360, loss: 0.000000, acc: 1.0000, recall: 0.5500, precision: 0.5500, f_beta: 0.5500
Epoch: 86
Epoch: 87
train: step: 1380, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 88
train: step: 1400, loss: 0.000000, acc: 1.0000, recall: 0.7000, precision: 0.7000, f_beta: 0.7000
开始验证。。。 2020-11-01T10:44:07.347359, step: 1400, loss: 5.111372, acc: 0.8506,precision: 0.4032, recall: 0.4083, f_beta: 0.3982 *
Epoch: 89
train: step: 1420, loss: 0.000000, acc: 1.0000, recall: 0.5500, precision: 0.5500, f_beta: 0.5500
Epoch: 90
train: step: 1440, loss: 0.000000, acc: 1.0000, recall: 0.5500, precision: 0.5500, f_beta: 0.5500
Epoch: 91
Epoch: 92
train: step: 1460, loss: 0.000000, acc: 1.0000, recall: 0.7000, precision: 0.7000, f_beta: 0.7000
Epoch: 93
train: step: 1480, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 94
train: step: 1500, loss: 0.000000, acc: 1.0000, recall: 0.6000, precision: 0.6000, f_beta: 0.6000
开始验证。。。 2020-11-01T10:44:57.645305, step: 1500, loss: 5.206666, acc: 0.8521,precision: 0.4003, recall: 0.4040, f_beta: 0.3957
Epoch: 95
train: step: 1520, loss: 0.000000, acc: 1.0000, recall: 0.6000, precision: 0.6000, f_beta: 0.6000
Epoch: 96
Epoch: 97
train: step: 1540, loss: 0.000000, acc: 1.0000, recall: 0.7500, precision: 0.7500, f_beta: 0.7500
Epoch: 98
train: step: 1560, loss: 0.000000, acc: 1.0000, recall: 0.7000, precision: 0.7000, f_beta: 0.7000
Epoch: 99
train: step: 1580, loss: 0.000000, acc: 1.0000, recall: 0.8000, precision: 0.8000, f_beta: 0.8000
Epoch: 100
train: step: 1600, loss: 0.000000, acc: 1.0000, recall: 0.5000, precision: 0.5000, f_beta: 0.5000
开始验证。。。 2020-11-01T10:45:47.867190, step: 1600, loss: 5.080955, acc: 0.8566,precision: 0.4087, recall: 0.4131, f_beta: 0.4036 *
<Figure size 1000x600 with 10 Axes>
绘图完成了。。。
开始进行测试。。。
计算Precision, Recall and F1-Score...
precision recall f1-score support Agriculture 0.89 0.90 0.89 1022
Art 0.80 0.95 0.86 742
Communication 0.19 0.26 0.22 27
Computer 0.95 0.94 0.94 1358
Economy 0.86 0.91 0.89 1601
Education 1.00 0.11 0.21 61
Electronics 0.35 0.39 0.37 28
Energy 1.00 0.03 0.06 33
Enviornment 0.88 0.96 0.92 1218
History 0.79 0.48 0.60 468
Law 1.00 0.12 0.21 52
Literature 0.00 0.00 0.00 34
Medical 0.50 0.13 0.21 53
Military 0.33 0.01 0.03 76
Mine 1.00 0.03 0.06 34
Philosophy 1.00 0.04 0.09 45
Politics 0.73 0.91 0.81 1026
Space 0.84 0.86 0.85 642
Sports 0.93 0.91 0.92 1254
Transport 0.33 0.03 0.06 59 accuracy 0.86 9833
macro avg 0.72 0.45 0.46 9833
weighted avg 0.85 0.86 0.84 9833

结果可视化图片如下:

进行预测。。。
开始预测文本的类别。。。
输入的文本是:自动化学报ACTA AUTOMATICA SINICA1997年 第23卷 第4期 Vol.23 No.4 1997一种在线建模方法的研究1)赵希男 粱三龙 潘德惠摘 要 针对一类系统提出了一种通用性...
预测的类别是: Computer
真实的类别是: Computer
================================================
输入的文本是:航空动力学报JOURNAL OF AEROSPACE POWER1999年 第14卷 第1期 VOL.14 No.1 1999变几何涡扇发动机几何调节对性能的影响朱之丽 李 东摘要:本文以高推重比涡扇...
预测的类别是: Space
真实的类别是: Space
================================================
输入的文本是:【 文献号 】1-4242【原文出处】图书馆论坛【原刊地名】广州【原刊期号】199503【原刊页号】13-15【分 类 号】G9【分 类 名】图书馆学、信息科学、资料工作【 作 者 】周坚宇【复印期...
预测的类别是: Sports
真实的类别是: Sports
================================================
输入的文本是:产业与环境INDUSTRY AND ENVIRONMENT1998年 第20卷 第4期 Vol.20 No.4 1998科技期刊采矿——事实与数字引 言本期《产业与环境》中的向前看文章并没有十分详细地...
预测的类别是: Enviornment
真实的类别是: Enviornment
================================================
输入的文本是:环境技术ENVIRONMENTAL TECHNOLOGY1999年 第3期 No.3 1999正弦振动试验中物理计算闫立摘要:本文通过阐述正弦振动试验技术涉及的物理概念、力学原理,编写了较适用的C语言...
预测的类别是: Space
真实的类别是: Enviornment
================================================

下面是一些实现的对比:
transformer

评价指标 precision recall f1-score support
accuracy     0.86 9833
macro avg 0.72 0.45 0.46 9833
weighted avg 0.85 0.86 0.84 9833

bistm

评价指标 precision recall f1-score support
accuracy     0.77 9833
macro avg 0.47 0.40 0.41 9833
weighted avg 0.76 0.77 0.76 9833

bilstmattn

评价指标 precision recall f1-score support
accuracy     0.92 9833
macro avg 0.70 0.64 0.65 9833
weighted avg 0.93 0.92 0.92 9833

textrcnn

评价指标 precision recall f1-score support
accuracy     0.89 9833
macro avg 0.71 0.46 0.48 9833
weighted avg 0.88 0.89 0.87 9833

rcnn
很奇怪,rcnn网络并没有得到有效的训练

评价指标 precision recall f1-score support
accuracy     0.16 9833
macro avg 0.01 0.05 0.02 9833
weighted avg 0.04 0.16 0.05 9833

十分感谢以下仓库,给了自己很多参考:
https://github.com/jiangxinyang227/NLP-Project/tree/master/text_classifier 
https://github.com/gaussic/text-classification-cnn-rnn

基于tensorflow的文本分类总结(数据集是复旦中文语料)的更多相关文章

  1. 利用RNN进行中文文本分类(数据集是复旦中文语料)

    利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词 ...

  2. 利用CNN进行中文文本分类(数据集是复旦中文语料)

    利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用 ...

  3. 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料)

    1.对语料进行分析 基本目录如下: 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为 ...

  4. tensorflow实现基于LSTM的文本分类方法

    tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...

  5. 一文详解如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)

    雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用 ...

  6. Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存

    用pytorch进行文本分类,数据集为keras内置的imdb影评数据(二分类),代码包含六个部分(详见代码) 使用环境: pytorch:1.1.0 cuda:10.0 gpu:RTX2070 (1 ...

  7. 基于weka的文本分类实现

    weka介绍 参见 1)百度百科:http://baike.baidu.com/link?url=V9GKiFxiAoFkaUvPULJ7gK_xoEDnSfUNR1woed0YTmo20Wjo0wY ...

  8. 基于SVMLight的文本分类

    支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本 .非线性及高维模式识别 中表现出许多特有的优势,并能够推广应用到函数拟合等 ...

  9. Python 基于 NLP 的文本分类

    这是前一段时间在做的事情,有些python库需要python3.5以上,所以mac请先升级 brew安装以下就好,然后Preference(comm+',')->Project: Text-Cl ...

随机推荐

  1. 一篇文章搞定 Nginx 反向代理与负载均衡

    代理 要想弄明白反向代理,首先要知道啥是正向代理,要搞懂正向代理只需要知道啥是代理即可.代理其实就是一个中介,在不同事物或同一事物内部起到居间联系作用的环节.比如买票黄牛,房屋中介等等. 在互联网中代 ...

  2. Pots(POJ - 3414)【BFS 寻找最短路+路径输出】

    Pots(POJ - 3414) 题目链接 算法 BFS 1.这道题问的是给你两个体积分别为A和B的容器,你对它们有三种操作,一种是装满其中一个瓶子,另一种是把其中一个瓶子的水都倒掉,还有一种就是把其 ...

  3. Unity Shader 00 - 梳理 Unity Shader 的基本结构

    0x00 写在前面 之前一直在阅读 The Book of Shaders 一书,为什么会开始写 Unity Shader 呢?一方面,因为该书目前尚未完结,写下此文时已阅读到该书的最新章节:另一方面 ...

  4. C++重载>>和<<(输入和输出运算符)详解

    转载:http://c.biancheng.net/view/2311.html 在C++中,标准库本身已经对左移运算符<<和右移运算符>>分别进行了重载,使其能够用于不同数据 ...

  5. 结合实体框架(代码优先)、工作单元测试、Web API、ASP. net等,以存储库设计模式开发示例项目。NET MVC 5和引导

    介绍 这篇文章将帮助你理解在库模式.实体框架.Web API.SQL Server 2012.ASP中的工作单元测试的帮助下设计一个项目.净MVC应用程序.我们正在开发一个图书实体和作者专用的样例图书 ...

  6. BUUCTF_web_三

    下面还是简单web的入门题 [GKCTF2020]cve版签到 这次的比赛最简单的题了吧,提示是CVE-2020-7066,但是网上没有几个关于这个漏洞的相关利用的文章,似乎是get_header() ...

  7. idea如何新建一个springmvc 工程

    java 版本 1.8.0_261 idea 版本2020.1 Tomcat 9  maven 3.6 新建工程 File->new->project 默认会下载springframewo ...

  8. 多测师讲解python_安装001.1

    Python+pycharm 一.Python安装 python现在主要就是python2和python3,目前python3最新是3.8,考虑稳定性我们用3.6,3.7等 第一步:下载Python安 ...

  9. 【C语言C++编程学习笔记】一种很酷的 C 语言技巧,灵活运用编程技巧让你写代码事半功倍!

    C语言常常让人觉得它所能表达的东西非常有限.它不具有类似第一级函数和模式匹配这样的高级功能.但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了. ☆ 指定的初始化 很多人都 ...

  10. swoft生成控制器

    [root@localhost swoft]# swoftcli gen:controller -h [ERROR] Command 'controller' is not exist in grou ...