权值线段树

顾名思义,就是以权值为下标建立的线段树。

现在让我们来考虑考虑上面那句话的产生的三个小问题:

1. 如果说权值作为下标了,那这颗线段树里存什么呢?

————— 这颗线段树中, 记录每个值出现的次数

2.权值很大怎么办?数组空间不够啊

————— 可以先离散化,再记录

3.那权值线段树到底是用来干嘛的呢?

————— 可以快速求出第k小值(其实主要还是为了主席树做铺垫啦)

那第k小值该怎么求呢???

从树根依次往下

若当前值K大于左儿子的值,则将K-=左儿子的值,然后访问右儿子

若当前值K小于左儿子的值,则直接访问左儿子

直到访问到叶子节点时,那么该节点所代表的那个数就是要求的第k小值

(因为其实节点中存的值是该值域区间的数字出现次数,所以第k小值前面一定会有k-1个数出现过)

代码就不给了

可持久化线段树

普通的线段树单点修改操作与区间查询自然不是问题

可是

假如当前询问若干修改操作之前的区间呢???

仔细想想

.

.

.

最暴力的做法无疑是对于每个修改操作重开一个线段树,

可是...这样显然空间开不下

那我们能不能优化一下呢

我们看看对于一次单点修改,这颗线段树操作前和操作后有什么不同吧

有点小丑,凑合着看

观察一下这两颗树,发现它们有区别的地方仅仅在于红色的方框

哎??? 这不是此次操作修改的目标元素到根的路径吗

既然只有这条路径变了,那我们就只复制这条路径好了,不用再复制整棵树了

所以空间就能大大的缩小了(log级)

代码 (洛谷模板)

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define get getchar()
#define in inline
in int read()
{
int x=1,t=0; char ch=get;
while((ch<'0' || ch>'9') && ch!='-') ch=get;
if(ch=='-') ch=get,x=-1;
while(ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t*x;
}
const int _=1e6+6;
int n,m,a[_],tot,root[_<<5],ls[_<<5],rs[_<<5],val[_<<5]; // ls == leftson,rs == rightson
in int build(int l,int r)
{
int now=++tot;
if(l==r)
{
ls[now]=rs[now]=0;
val[now]=a[l];
return now;
}
int mid=(l+r)>>1;
ls[now]=build(l,mid);
rs[now]=build(mid+1,r);
return now;
} //初始时的线段树
in int add(int k,int l,int r,int x,int t)
{
int now=++tot;
if(l==r)
{
val[now]=t;
ls[now]=rs[now]=0;
return now;
} //到了目标点,修改它
ls[now]=ls[k],rs[now]=rs[k];
int mid=(l+r)>>1;
if(x<=mid) ls[now]=add(ls[now],l,mid,x,t); //若目标点在原树的左子树上,则新建左儿子
else rs[now]=add(rs[now],mid+1,r,x,t); //若在右儿子上,同理
return now;
} //修改并添加新路径
in int query(int k,int l,int r,int x)
{
if(l==r) return val[k];
int mid=(l+r)>>1;
if(x<=mid) return query(ls[k],l,mid,x);
else return query(rs[k],mid+1,r,x);
} //查询
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++)
a[i]=read();
root[0]=build(1,n);
for(re int i=1;i<=m;i++)
{
int v=read(),o=read();
if(o==1)
{
int x=read(),y=read();
root[i]=add(root[v],1,n,x,y);
}
else
{
int x=read();
cout<<query(root[v],1,n,x)<<endl;
root[i]=root[v];
}
}
/*for(re int i=0;i<=10;i++)
{
cout<<"case #"<<i<<": ";
for(re int j=1;j<=n;j++)
cout<<query(root[i],1,n,j)<<' ';
cout<<endl;
}//打印每个历史版本 */
return 0;
}
/*
9.30 By yzhx
*/

静态主席树

可以用来求区间第k小/大值

说白了,就是把我们上面讲到的两个东西加起来,也就是用 可持久化权值线段树

再来看建树的具体步骤:

1.建一颗空线段树

2.依次把每个值加入这颗线段树(看做是一个修改操作)

查询:

(若当前查询的区间 l~r)

则直接把历史版本r 与 历史版本l-1, 直接加减,就能得到当前这个区间每个数出现的情况了

代码 (洛谷模板)

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define in inline
#define get getchar()
in int read()
{
int t=0,x=1; char ch=get;
while((ch<'0' || ch>'9') && ch!='-') ch=get;
if(ch=='-') ch=get,x=-1;
while( ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t*x;
}
const int _=2e5+5;
int tot,cnt,n,m,a[_],b[_],sum[_<<6],ls[_<<6],rs[_<<6],root[_];
in int build(int l,int r)
{
int now=++cnt;
if(l==r)
{
sum[now]=ls[now]=rs[now]=0;
return now;
}
int mid=(l+r)>>1;
ls[now]=build(l,mid),rs[now]=build(mid+1,r);
return now;
} //建一颗空树
in int add(int k,int l,int r,int x)
{
int now=++cnt;
if(l==r)
{
ls[now]=rs[now]=0;
sum[now]=sum[k]+1;
return now;
}
int mid=(l+r)>>1;
ls[now]=ls[k],rs[now]=rs[k],sum[now]=sum[k];
if(x<=mid) ls[now]=add(ls[k],l,mid,x);
else rs[now]=add(rs[k],mid+1,r,x);
sum[now]=sum[rs[now]]+sum[ls[now]];
return now;
} //加入每个元素
in int query(int k1,int k2,int l,int r,int x)
{
if(l==r) return a[l];
int mid=l+r>>1;
int t=sum[ls[k2]]-sum[ls[k1]];
if(x<=t) return query(ls[k1],ls[k2],l,mid,x);
else return query(rs[k1],rs[k2],mid+1,r,x-t);
} //查询
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++)
b[i]=a[i]=read();
sort(a+1,a+n+1);
tot=unique(a+1,a+n+1)-(a+1);
root[0]=build(1,n);
for(re int i=1;i<=n;i++)
{
// if(i<=tot) cout<<a[i]<<' ';
int x=lower_bound(a+1,a+tot+1,b[i])-a;
root[i]=add(root[i-1],1,tot,x);
}
//cout<<endl;
for(re int i=1;i<=m;i++)
{
int l=read(),r=read(),k=read();
printf("%d\n",query(root[l-1],root[r],1,tot,k));
}
}

权值线段树&&可持久化线段树&&主席树的更多相关文章

  1. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  2. BZOJ4771七彩树——可持久化线段树+set+树链的并+LCA

    给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节 点的颜色为c[i].如果c[i]=c[j],那么我们认为点i和点j拥有相同的颜色.定义dept ...

  3. [BZOJ 4771]七彩树(可持久化线段树+树上差分)

    [BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...

  4. 主席树||可持久化线段树||离散化||[CQOI2015]任务查询系统||BZOJ 3932||Luogu P3168

    题目: [CQOI2015]任务查询系统 题解: 是一道很经典的题目.大体思路是抓优先级来当下标做主席树,用时刻作为主席树的版本.然而优先级范围到1e7去了,就离散化一遍.然后把每个事件的开始(s). ...

  5. [luogu3919]可持久化数组【主席树】

    链接:https://www.luogu.org/problemnew/show/P3919 分析 很明显我们可以用主席树来维护,所谓主席树就是可持久化线段树,能够查询历史版本而且可以实现修改操作,反 ...

  6. SPOJ DQUERY树状数组离线or主席树

    D-query Time Limit: 227MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Submit Status ...

  7. 最大矩阵覆盖权值--(静态连续最大子段 (线段树) )-HDU(6638)Snowy Smile

    这题是杭电多校2019第六场的题目 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你平面上n个点,每个点都有权值(有负权),让你计算一 ...

  8. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  9. 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665

    如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...

随机推荐

  1. 在Ubuntu下部署Flask项目

    FlaskDemo 命名为test.py # coding=utf-8 from flask import Flask app = Flask(__name__) @app.route("/ ...

  2. 坚果云+svn实现异地非局域网个人代码版本管理

    原理大概是A地的设备作为服务端创建仓库,将仓库传上坚果云,同步到B地,再拉取仓库的代码

  3. ksoap2-android的简单使用

    soap2-android 官网地址 https://simpligility.github.io/ksoap2-android/index.html 发行版本 https://oss.sonatyp ...

  4. 与Bat脚本的故事

    因为工作时需要将定时处理的业务抽出来,废弃通过监听定时调用的这种方法,改为通过第三方软件定时执行bat脚本来实现,所以学习了一下bat脚本,整理出一些学习中的基础点和重点. 基础点: (1)bat脚本 ...

  5. C 多态 RT-Thread

    // RT-Thread对象模型采用结构封装中使用指针的形式达到面向对象中多态的效果,例如: // 抽象父类 #include <stdio.h> #include <assert. ...

  6. Layman PHP+JavaScript 实现图片无刷新上传

    html文件代码 <!-- ajax文件上传开始 --> <script type="text/javascript" src="/imageuploa ...

  7. JAVA对象转换为JSON及日期格式转换处理

    1.JSON日期格式转换 默认JSON对DATE类型会转换成一个多属性对象, 而不是单独的一个字符串, 在某些应用处理上不是很方便,  可以利用JsonValueProcessor来实现日期的转换. ...

  8. 020 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 14 变量与常量 知识总结

    020 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 14 变量与常量 知识总结 本文知识点:变量与常量 知识总结 Java中的标识符 Java中的关键字 目前常 ...

  9. 【题解】CF1426D Non-zero Segments

    题目戳我 \(\text{Solution:}\) 若\([l,r]\)子段和是\(0,\)则\(sum[r]=sum[l-1].\) 于是我们可以考虑维护当前哪一个前缀和出现过.对于区间\([l,r ...

  10. PHP添加新扩展包的步骤

    1.找到PHP解压包,将   php.ini-development   这个文件复制一份,并修改后缀名为  .ini 2.将这个文件打开,将此处注释解开, 3.配置你扩展的该包的位置 4.如果显示不 ...