权值线段树

顾名思义,就是以权值为下标建立的线段树。

现在让我们来考虑考虑上面那句话的产生的三个小问题:

1. 如果说权值作为下标了,那这颗线段树里存什么呢?

————— 这颗线段树中, 记录每个值出现的次数

2.权值很大怎么办?数组空间不够啊

————— 可以先离散化,再记录

3.那权值线段树到底是用来干嘛的呢?

————— 可以快速求出第k小值(其实主要还是为了主席树做铺垫啦)

那第k小值该怎么求呢???

从树根依次往下

若当前值K大于左儿子的值,则将K-=左儿子的值,然后访问右儿子

若当前值K小于左儿子的值,则直接访问左儿子

直到访问到叶子节点时,那么该节点所代表的那个数就是要求的第k小值

(因为其实节点中存的值是该值域区间的数字出现次数,所以第k小值前面一定会有k-1个数出现过)

代码就不给了

可持久化线段树

普通的线段树单点修改操作与区间查询自然不是问题

可是

假如当前询问若干修改操作之前的区间呢???

仔细想想

.

.

.

最暴力的做法无疑是对于每个修改操作重开一个线段树,

可是...这样显然空间开不下

那我们能不能优化一下呢

我们看看对于一次单点修改,这颗线段树操作前和操作后有什么不同吧

有点小丑,凑合着看

观察一下这两颗树,发现它们有区别的地方仅仅在于红色的方框

哎??? 这不是此次操作修改的目标元素到根的路径吗

既然只有这条路径变了,那我们就只复制这条路径好了,不用再复制整棵树了

所以空间就能大大的缩小了(log级)

代码 (洛谷模板)

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define get getchar()
#define in inline
in int read()
{
int x=1,t=0; char ch=get;
while((ch<'0' || ch>'9') && ch!='-') ch=get;
if(ch=='-') ch=get,x=-1;
while(ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t*x;
}
const int _=1e6+6;
int n,m,a[_],tot,root[_<<5],ls[_<<5],rs[_<<5],val[_<<5]; // ls == leftson,rs == rightson
in int build(int l,int r)
{
int now=++tot;
if(l==r)
{
ls[now]=rs[now]=0;
val[now]=a[l];
return now;
}
int mid=(l+r)>>1;
ls[now]=build(l,mid);
rs[now]=build(mid+1,r);
return now;
} //初始时的线段树
in int add(int k,int l,int r,int x,int t)
{
int now=++tot;
if(l==r)
{
val[now]=t;
ls[now]=rs[now]=0;
return now;
} //到了目标点,修改它
ls[now]=ls[k],rs[now]=rs[k];
int mid=(l+r)>>1;
if(x<=mid) ls[now]=add(ls[now],l,mid,x,t); //若目标点在原树的左子树上,则新建左儿子
else rs[now]=add(rs[now],mid+1,r,x,t); //若在右儿子上,同理
return now;
} //修改并添加新路径
in int query(int k,int l,int r,int x)
{
if(l==r) return val[k];
int mid=(l+r)>>1;
if(x<=mid) return query(ls[k],l,mid,x);
else return query(rs[k],mid+1,r,x);
} //查询
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++)
a[i]=read();
root[0]=build(1,n);
for(re int i=1;i<=m;i++)
{
int v=read(),o=read();
if(o==1)
{
int x=read(),y=read();
root[i]=add(root[v],1,n,x,y);
}
else
{
int x=read();
cout<<query(root[v],1,n,x)<<endl;
root[i]=root[v];
}
}
/*for(re int i=0;i<=10;i++)
{
cout<<"case #"<<i<<": ";
for(re int j=1;j<=n;j++)
cout<<query(root[i],1,n,j)<<' ';
cout<<endl;
}//打印每个历史版本 */
return 0;
}
/*
9.30 By yzhx
*/

静态主席树

可以用来求区间第k小/大值

说白了,就是把我们上面讲到的两个东西加起来,也就是用 可持久化权值线段树

再来看建树的具体步骤:

1.建一颗空线段树

2.依次把每个值加入这颗线段树(看做是一个修改操作)

查询:

(若当前查询的区间 l~r)

则直接把历史版本r 与 历史版本l-1, 直接加减,就能得到当前这个区间每个数出现的情况了

代码 (洛谷模板)

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define in inline
#define get getchar()
in int read()
{
int t=0,x=1; char ch=get;
while((ch<'0' || ch>'9') && ch!='-') ch=get;
if(ch=='-') ch=get,x=-1;
while( ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t*x;
}
const int _=2e5+5;
int tot,cnt,n,m,a[_],b[_],sum[_<<6],ls[_<<6],rs[_<<6],root[_];
in int build(int l,int r)
{
int now=++cnt;
if(l==r)
{
sum[now]=ls[now]=rs[now]=0;
return now;
}
int mid=(l+r)>>1;
ls[now]=build(l,mid),rs[now]=build(mid+1,r);
return now;
} //建一颗空树
in int add(int k,int l,int r,int x)
{
int now=++cnt;
if(l==r)
{
ls[now]=rs[now]=0;
sum[now]=sum[k]+1;
return now;
}
int mid=(l+r)>>1;
ls[now]=ls[k],rs[now]=rs[k],sum[now]=sum[k];
if(x<=mid) ls[now]=add(ls[k],l,mid,x);
else rs[now]=add(rs[k],mid+1,r,x);
sum[now]=sum[rs[now]]+sum[ls[now]];
return now;
} //加入每个元素
in int query(int k1,int k2,int l,int r,int x)
{
if(l==r) return a[l];
int mid=l+r>>1;
int t=sum[ls[k2]]-sum[ls[k1]];
if(x<=t) return query(ls[k1],ls[k2],l,mid,x);
else return query(rs[k1],rs[k2],mid+1,r,x-t);
} //查询
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++)
b[i]=a[i]=read();
sort(a+1,a+n+1);
tot=unique(a+1,a+n+1)-(a+1);
root[0]=build(1,n);
for(re int i=1;i<=n;i++)
{
// if(i<=tot) cout<<a[i]<<' ';
int x=lower_bound(a+1,a+tot+1,b[i])-a;
root[i]=add(root[i-1],1,tot,x);
}
//cout<<endl;
for(re int i=1;i<=m;i++)
{
int l=read(),r=read(),k=read();
printf("%d\n",query(root[l-1],root[r],1,tot,k));
}
}

权值线段树&&可持久化线段树&&主席树的更多相关文章

  1. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  2. BZOJ4771七彩树——可持久化线段树+set+树链的并+LCA

    给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节 点的颜色为c[i].如果c[i]=c[j],那么我们认为点i和点j拥有相同的颜色.定义dept ...

  3. [BZOJ 4771]七彩树(可持久化线段树+树上差分)

    [BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...

  4. 主席树||可持久化线段树||离散化||[CQOI2015]任务查询系统||BZOJ 3932||Luogu P3168

    题目: [CQOI2015]任务查询系统 题解: 是一道很经典的题目.大体思路是抓优先级来当下标做主席树,用时刻作为主席树的版本.然而优先级范围到1e7去了,就离散化一遍.然后把每个事件的开始(s). ...

  5. [luogu3919]可持久化数组【主席树】

    链接:https://www.luogu.org/problemnew/show/P3919 分析 很明显我们可以用主席树来维护,所谓主席树就是可持久化线段树,能够查询历史版本而且可以实现修改操作,反 ...

  6. SPOJ DQUERY树状数组离线or主席树

    D-query Time Limit: 227MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Submit Status ...

  7. 最大矩阵覆盖权值--(静态连续最大子段 (线段树) )-HDU(6638)Snowy Smile

    这题是杭电多校2019第六场的题目 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你平面上n个点,每个点都有权值(有负权),让你计算一 ...

  8. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  9. 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665

    如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...

随机推荐

  1. spring初始(介绍、核心架构)

    1.spring介绍 Spring是个java企业级应用的开源开发框架.主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Spring框架目标是简化Java企业级应用开发,并通 ...

  2. 你可能不知道的 Date 类

    Date 是 JS 中的重要的一个内置对象,其实例主要用于处理时间和日期,其时间基于 1970-1-1 (世界标准时间)起的毫秒数,时间戳长度为 13 位(不同于 Unix 时间戳的长度 10 位). ...

  3. websocket+sockjs+stompjs详解及实例

    最近有项目需求要用到websocket,刚开始以为很简单,但是随着遇到问题,深入了解,才知道websocket并不是想象中的那么简单,这篇文章主要是考虑websocket在客户端的使用. 1.http ...

  4. 50个你必须了解的Kubernetes面试问题

    Kubernetes一直是当今业界的流行语,也是最好的编排工具.它吸引了许多想要提升自己职业生涯的经验丰富的专业人士.HuaWei,Pokemon,Box,eBay,Ing,Yahoo Japan,S ...

  5. Python 导入模块的两种方法:import xxx 和from...import xxx

    import 方式导入模块 import tool.getsum.add # 导入模块,优先会从启动文件的当前目录开始寻找 # 如果找到,就使用 # 如果找不到,会在系统模块存放目录去 tool.ge ...

  6. RocketMQ的消息是怎么丢失的

    前言 通过之前文章的阅读,有关RocketMQ的底层原理相信小伙伴们已经有了一个比较清晰的认识. 那么接下来王子想跟大家讨论一个话题,如果我们的项目中引入了MQ,势必要面对的一个问题,就是消息丢失问题 ...

  7. mongoose 查询数据属性为数组,且包含某个值的方法

    mongoose在创建schema的时候有些属性需要设置为数组类型,比如商品图片.商品标签.不同尺寸.价格等. 那么怎么查询具有某个标签的商品了,下面记录一下两种情况: 查询具有'vue'标签的文章 ...

  8. day23 Pyhton学习 昨日回顾.re模块.序列化模块

    一.昨日回顾 #__file__查看当前文件所在的绝对路径 #time 时间模块 time.time 获取当前时间戳时间 字符串->time.strptime->结构化->mktim ...

  9. 论减少代码中return语句的骚操作

    一.写作背景 最近组内在推行checkstyle代码规范的检测,关于checkstyle的介绍可以参考:https://checkstyle.sourceforge.io, 在按照checkstyle ...

  10. spring注解@Transactional 和乐观锁,悲观锁并发生成有序编号问题

      需求:系统中有一个自增的合同编号,在满足并发情况下,生成的合同编号是自增的. 测试工具:Apache Jmeter 实现方法: 创建一个数据库表.编号最大值记录表 表结构类似 CREATE TAB ...