继之前的mysql夺命连环之后,我发现我这个标题被好多套用的,什么夺命zookeeper,夺命多线程一大堆,这一次,开始面试题系列MQ专题,消息队列作为日常常见的使用中间件,面试也是必问的点之一,一起来看看MQ的面试题。

你们为什么使用mq?具体的使用场景是什么?

mq的作用很简单,削峰填谷。以电商交易下单的场景来说,正向交易的过程可能涉及到创建订单、扣减库存、扣减活动预算、扣减积分等等。每个接口的耗时如果是100ms,那么理论上整个下单的链路就需要耗费400ms,这个时间显然是太长了。

如果这些操作全部同步处理的话,首先调用链路太长影响接口性能,其次分布式事务的问题很难处理,这时候像扣减预算和积分这种对实时一致性要求没有那么高的请求,完全就可以通过mq异步的方式去处理了。同时,考虑到异步带来的不一致的问题,我们可以通过job去重试保证接口调用成功,而且一般公司都会有核对的平台,比如下单成功但是未扣减积分的这种问题可以通过核对作为兜底的处理方案。

使用mq之后我们的链路变简单了,同时异步发送消息我们的整个系统的抗压能力也上升了。

那你们使用什么mq?基于什么做的选型?

我们主要调研了几个主流的mq,kafka、rabbitmq、rocketmq、activemq,选型我们主要基于以下几个点去考虑:

  1. 由于我们系统的qps压力比较大,所以性能是首要考虑的要素。
  2. 开发语言,由于我们的开发语言是java,主要是为了方便二次开发。
  3. 对于高并发的业务场景是必须的,所以需要支持分布式架构的设计。
  4. 功能全面,由于不同的业务场景,可能会用到顺序消息、事务消息等。

基于以上几个考虑,我们最终选择了RocketMQ。

你上面提到异步发送,那消息可靠性怎么保证?

消息丢失可能发生在生产者发送消息、MQ本身丢失消息、消费者丢失消息3个方面。

生产者丢失

生产者丢失消息的可能点在于程序发送失败抛异常了没有重试处理,或者发送的过程成功但是过程中网络闪断MQ没收到,消息就丢失了。

由于同步发送的一般不会出现这样使用方式,所以我们就不考虑同步发送的问题,我们基于异步发送的场景来说。

异步发送分为两个方式:异步有回调和异步无回调,无回调的方式,生产者发送完后不管结果可能就会造成消息丢失,而通过异步发送+回调通知+本地消息表的形式我们就可以做出一个解决方案。以下单的场景举例。

  1. 下单后先保存本地数据和MQ消息表,这时候消息的状态是发送中,如果本地事务失败,那么下单失败,事务回滚。
  2. 下单成功,直接返回客户端成功,异步发送MQ消息
  3. MQ回调通知消息发送结果,对应更新数据库MQ发送状态
  4. JOB轮询超过一定时间(时间根据业务配置)还未发送成功的消息去重试
  5. 在监控平台配置或者JOB程序处理超过一定次数一直发送不成功的消息,告警,人工介入。

一般而言,对于大部分场景来说异步回调的形式就可以了,只有那种需要完全保证不能丢失消息的场景我们做一套完整的解决方案。

MQ丢失

如果生产者保证消息发送到MQ,而MQ收到消息后还在内存中,这时候宕机了又没来得及同步给从节点,就有可能导致消息丢失。

比如RocketMQ:

RocketMQ分为同步刷盘和异步刷盘两种方式,默认的是异步刷盘,就有可能导致消息还未刷到硬盘上就丢失了,可以通过设置为同步刷盘的方式来保证消息可靠性,这样即使MQ挂了,恢复的时候也可以从磁盘中去恢复消息。

比如Kafka也可以通过配置做到:

acks=all 只有参与复制的所有节点全部收到消息,才返回生产者成功。这样的话除非所有的节点都挂了,消息才会丢失。
replication.factor=N,设置大于1的数,这会要求每个partion至少有2个副本
min.insync.replicas=N,设置大于1的数,这会要求leader至少感知到一个follower还保持着连接
retries=N,设置一个非常大的值,让生产者发送失败一直重试

虽然我们可以通过配置的方式来达到MQ本身高可用的目的,但是都对性能有损耗,怎样配置需要根据业务做出权衡。

消费者丢失

消费者丢失消息的场景:消费者刚收到消息,此时服务器宕机,MQ认为消费者已经消费,不会重复发送消息,消息丢失。

RocketMQ默认是需要消费者回复ack确认,而kafka需要手动开启配置关闭自动offset。

消费方不返回ack确认,重发的机制根据MQ类型的不同发送时间间隔、次数都不尽相同,如果重试超过次数之后会进入死信队列,需要手工来处理了。(Kafka没有这些)

你说到消费者消费失败的问题,那么如果一直消费失败导致消息积压怎么处理?

因为考虑到时消费者消费一直出错的问题,那么我们可以从以下几个角度来考虑:

  1. 消费者出错,肯定是程序或者其他问题导致的,如果容易修复,先把问题修复,让consumer恢复正常消费
  2. 如果时间来不及处理很麻烦,做转发处理,写一个临时的consumer消费方案,先把消息消费,然后再转发到一个新的topic和MQ资源,这个新的topic的机器资源单独申请,要能承载住当前积压的消息
  3. 处理完积压数据后,修复consumer,去消费新的MQ和现有的MQ数据,新MQ消费完成后恢复原状

那如果消息积压达到磁盘上限,消息被删除了怎么办?

这。。。他妈都删除了我有啥办法啊。。。冷静,再想想。。有了。

最初,我们发送的消息记录是落库保存了的,而转发发送的数据也保存了,那么我们就可以通过这部分数据来找到丢失的那部分数据,再单独跑个脚本重发就可以了。如果转发的程序没有落库,那就和消费方的记录去做对比,只是过程会更艰难一点。

说了这么多,那你说说RocketMQ实现原理吧?

RocketMQ由NameServer注册中心集群、Producer生产者集群、Consumer消费者集群和若干Broker(RocketMQ进程)组成,它的架构原理是这样的:

  1. Broker在启动的时候去向所有的NameServer注册,并保持长连接,每30s发送一次心跳
  2. Producer在发送消息的时候从NameServer获取Broker服务器地址,根据负载均衡算法选择一台服务器来发送消息
  3. Conusmer消费消息的时候同样从NameServer获取Broker地址,然后主动拉取消息来消费

为什么RocketMQ不使用Zookeeper作为注册中心呢?

我认为有以下几个点是不使用zookeeper的原因:

  1. 根据CAP理论,同时最多只能满足两个点,而zookeeper满足的是CP,也就是说zookeeper并不能保证服务的可用性,zookeeper在进行选举的时候,整个选举的时间太长,期间整个集群都处于不可用的状态,而这对于一个注册中心来说肯定是不能接受的,作为服务发现来说就应该是为可用性而设计。
  2. 基于性能的考虑,NameServer本身的实现非常轻量,而且可以通过增加机器的方式水平扩展,增加集群的抗压能力,而zookeeper的写是不可扩展的,而zookeeper要解决这个问题只能通过划分领域,划分多个zookeeper集群来解决,首先操作起来太复杂,其次这样还是又违反了CAP中的A的设计,导致服务之间是不连通的。
  3. 持久化的机制来带的问题,ZooKeeper 的 ZAB 协议对每一个写请求,会在每个 ZooKeeper 节点上保持写一个事务日志,同时再加上定期的将内存数据镜像(Snapshot)到磁盘来保证数据的一致性和持久性,而对于一个简单的服务发现的场景来说,这其实没有太大的必要,这个实现方案太重了。而且本身存储的数据应该是高度定制化的。
  4. 消息发送应该弱依赖注册中心,而RocketMQ的设计理念也正是基于此,生产者在第一次发送消息的时候从NameServer获取到Broker地址后缓存到本地,如果NameServer整个集群不可用,短时间内对于生产者和消费者并不会产生太大影响。

那Broker是怎么保存数据的呢?

RocketMQ主要的存储文件包括commitlog文件、consumequeue文件、indexfile文件。

Broker在收到消息之后,会把消息保存到commitlog的文件当中,而同时在分布式的存储当中,每个broker都会保存一部分topic的数据,同时,每个topic对应的messagequeue下都会生成consumequeue文件用于保存commitlog的物理位置偏移量offset,indexfile中会保存key和offset的对应关系。

CommitLog文件保存于${Rocket_Home}/store/commitlog目录中,从图中我们可以明显看出来文件名的偏移量,每个文件默认1G,写满后自动生成一个新的文件。

由于同一个topic的消息并不是连续的存储在commitlog中,消费者如果直接从commitlog获取消息效率非常低,所以通过consumequeue保存commitlog中消息的偏移量的物理地址,这样消费者在消费的时候先从consumequeue中根据偏移量定位到具体的commitlog物理文件,然后根据一定的规则(offset和文件大小取模)在commitlog中快速定位。

Master和Slave之间是怎么同步数据的呢?

而消息在master和slave之间的同步是根据raft协议来进行的:

  1. 在broker收到消息后,会被标记为uncommitted状态
  2. 然后会把消息发送给所有的slave
  3. slave在收到消息之后返回ack响应给master
  4. master在收到超过半数的ack之后,把消息标记为committed
  5. 发送committed消息给所有slave,slave也修改状态为committed

你知道RocketMQ为什么速度快吗?

是因为使用了顺序存储、Page Cache和异步刷盘。

  1. 我们在写入commitlog的时候是顺序写入的,这样比随机写入的性能就会提高很多
  2. 写入commitlog的时候并不是直接写入磁盘,而是先写入操作系统的PageCache
  3. 最后由操作系统异步将缓存中的数据刷到磁盘

什么是事务、半事务消息?怎么实现的?

事务消息就是MQ提供的类似XA的分布式事务能力,通过事务消息可以达到分布式事务的最终一致性。

半事务消息就是MQ收到了生产者的消息,但是没有收到二次确认,不能投递的消息。

实现原理如下:

  1. 生产者先发送一条半事务消息到MQ
  2. MQ收到消息后返回ack确认
  3. 生产者开始执行本地事务
  4. 如果事务执行成功发送commit到MQ,失败发送rollback
  5. 如果MQ长时间未收到生产者的二次确认commit或者rollback,MQ对生产者发起消息回查
  6. 生产者查询事务执行最终状态
  7. 根据查询事务状态再次提交二次确认

最终,如果MQ收到二次确认commit,就可以把消息投递给消费者,反之如果是rollback,消息会保存下来并且在3天后被删除。

- END -

《我想进大厂》之MQ夺命连环11问的更多相关文章

  1. 《我想进大厂》之Redis夺命连环11问

    这是面试题系列第三篇--redis专题. 说说Redis基本数据类型有哪些吧 字符串:redis没有直接使用C语言传统的字符串表示,而是自己实现的叫做简单动态字符串SDS的抽象类型.C语言的字符串不记 ...

  2. 《我想进大厂》之Dubbo普普通通9问

    这是面试专题系列第四篇,Dubbo系列.Dubbo本身并不复杂,而且官方文档写的非常清楚详细,面试中dubbo的问题一般不会很多,从分层到工作原理.负载均衡策略.容错机制.SPI机制基本就差不多了,最 ...

  3. 《我想进大厂》之mysql夺命连环13问

    想进大厂,mysql不会那可不行,来接受mysql面试挑战吧,看看你能坚持到哪里? 1. 能说下myisam 和 innodb的区别吗? myisam引擎是5.1版本之前的默认引擎,支持全文检索.压缩 ...

  4. 阿里限流神器Sentinel夺命连环 17 问?

    1.前言 这是<spring Cloud 进阶>专栏的第五篇文章,这篇文章介绍一下阿里开源的流量防卫兵Sentinel,一款非常优秀的开源项目,经过近10年的双十一的考验,非常成熟的一款产 ...

  5. Spring Cloud Gateway夺命连环10问?

    大家好,我是不才陈某~ 最近有很多小伙伴私信我催更 <Spring Cloud 进阶>,陈某也总结了一下,最终原因就是陈某之前力求一篇文章将一个组件重要知识点讲透,这样导致了文章篇幅很长, ...

  6. 《我想进大厂》之Spring夺命连环10问

    1.说说Spring 里用到了哪些设计模式? 单例模式:Spring 中的 Bean 默认情况下都是单例的.无需多说. 工厂模式:工厂模式主要是通过 BeanFactory 和 Application ...

  7. 《我想进大厂》之JVM夺命连环10问

    这是面试专题系列第五篇JVM篇. 说说JVM的内存布局? Java虚拟机主要包含几个区域: 堆:堆Java虚拟机中最大的一块内存,是线程共享的内存区域,基本上所有的对象实例数组都是在堆上分配空间.堆区 ...

  8. 《我想进大厂》之Java基础夺命连环16问

    说好了面试系列已经完结了,结果发现还是真香,嗯,以为我发现我的Java基础都没写,所以这个就算作续集了,续集第一篇请各位收好. 说说进程和线程的区别? 进程是程序的一次执行,是系统进行资源分配和调度的 ...

  9. 《我想进大厂》之Zookeeper夺命连环9问

    谈谈你对Zookeeper的理解? Zookeeper是一个开源的分布式协调服务,由雅虎公司创建,由于最初雅虎公司的内部研究小组的项目大多以动物的名字命名,所以后来就以Zookeeper(动物管理员) ...

随机推荐

  1. 用 Python 写个七夕表白神器

    今天是七夕节,相比于现代人自创的 502,不对是 520,七夕才是中国传统意义上的情人节,本文分享几个 Python 表白程序,情侣可以现学现用,单身的话也可以先收藏一下,说不定下次就用上了. 爱心树 ...

  2. 关于Junit4 和 Junit5.4

    1.    Junit5.4 主要是用于Maven框架 , 对普通类的测试是不可以的. 如这个, junit4可以, junit5.4不可以. 2. Junit不可以使用 static 静态方法. 关 ...

  3. 拿捏了!ConcurrentHashMap!

    概述 本文将对JDK8中 ConcurrentHashMap 源码进行一定程度的解读.解读主要分为六个部分:主要属性与相关内部类介绍.构造函数.put过程.扩容过程.size过程.get过程.与JDK ...

  4. 关于windou环境下使用http或者ftp搭建网络hu共享

    第一步 右键此电脑进入控制面 第二步:进入程序点击启用或关闭windous功能 第三步进入服务开启界面 点击让windows更新为你下载文件,并保存更改完,然后关闭 四:邮件我的电脑进入管理 四右键添 ...

  5. ArcGIS Pro 二次开发

    本文基于 Windows7 + VS2019 + .NET Framework 4.8 + ArcGIS Pro 2.5.22081 开发和撰写. 目录 开发环境配置 获取ArcGIS Pro 安装V ...

  6. 【Android】Android开发小功能,倒计时的实现。时间计时器倒计时功能。

    作者:程序员小冰,GitHub主页:https://github.com/QQ986945193 新浪微博:http://weibo.com/mcxiaobing 首先给大家看一下我们今天这个最终实现 ...

  7. 【原创】如何优雅的转换Bean对象

    背景 我们的故事要从一个风和日丽的下午开始说起! 这天,外包韩在位置上写代码-外包韩根据如下定义 PO(persistant object):持久化对象,可以看成是与数据库中的表相映射的 java 对 ...

  8. 动态路由 - OSPF 一文详解

    动态路由 在之前的文章中,介绍了基于距离矢量的路由协议.而在今天这这一部分中会主要讲解链路状态的路由协议,对于动态的路由协议来说,需要具备如下的能力: 发现远端网络 路由器可以直接获得直连路由,这是由 ...

  9. Java中构建长字符串的四种模式

    回字有四种写法,构建字符串也有四种方式. 用+号最快,第二第三种可读性好,第四种是log4j自有的.下面请见代码: package logbackCfg; import java.text.Messa ...

  10. 高德地图POI爬取_Python

    高德地图POI 官方文档:https://lbs.amap.com/api/webservice/guide/api/search#introduce 官网控制台:https://lbs.amap.c ...