【算法】KMP算法
简介
KMP算法由 Knuth-Morris-Pratt
三位科学家提出,可用于在一个 文本串
中寻找某 模式串
存在的位置。
本算法可以有效降低在一个 文本串
中寻找某 模式串
过程的时间复杂度。(如果采取朴素的想法则复杂度是 \(O(MN)\) )
这里朴素的想法指的是枚举
文本串
的起点,然后让模式串
从第一位开始一个个地检查是否配对,如果不配对则继续枚举起点。
前置知识
真前缀
指字符串左部的任意子串(不包含自身),如 abcde
中的 a
,ab
,abc
,abcd
都是真前缀但 abcde
不是。
真后缀
指字符串右部的任意子串(不包含自身),如 abcde
中的 e
,de
,cde
,bcde
都是真后缀但 abcde
不是。
前缀函数
一个字符串中最长的、相等的真前缀与真后缀的长度, 如AABBAAA
对应的前缀函数值是 \(2\) 。
原理
注意:在分析的时候,我们规定字符串的下标从 \(1\) 开始。
开始:
我们记扫描模式串的指针为j,而扫描文本串的指针为i,假设一开始i,j都在起点,然后让它们一直下去直到完全匹配或者失配,比如:
j
ABCD
i
ABCDEFG
然后
j
ABCD
i
ABCDEFG
最后在此完成了一次匹配,类似地如果ABCD
改为ABCC
则在此失配。
j
ABCD
i
ABCDEFG
i,j运作模式如上。
KMP算法就是,当模式串和文本串失配的时候,j
指针从真后缀的末尾跳到真前缀的末尾,然后从真前缀后一位开始继续匹配。(从而起到减少配对次数,这便是KMP算法的核心原理)
结合例子解释:
模式串: \(AABBAAA\)
文本串: \(AABBAABBAAA\)
j
指针在最后一个A处失配。
j
AABBAAA
i
AABBAABBAAA
因为此时 以j为尾的前缀
所对应的前缀函数值是 \(2\) ,所以 j指针
跳到这里:
j
AABBAAA
i
AABBAABBAAA
然后从下一位开始继续配对:
j
AABBAAA
i
AABBAABBAAA
最后
j
AABBAAA
i
AABBAABBAAA
可以看出,KMP能够有效减少配对次数。
实现
我们记
模式串
为p
,文本串
为s
。
从上面的模拟中,我们发现需要预处理出一个数组(记之为next[]
),它储存模式串中前缀对应的前缀函数\(\pi()\),如对于字符串ABCABC
:
\(\pi(0)=0\) (因为什么都没有)
\(\pi(1)=0\) (A
甚至没有真前缀和真后缀)
\(\pi(2)=0\) (AB
)
\(\pi(3)=0\) (ABC
)
\(\pi(4)=1\) (ABCA
)
\(\pi(5)=2\) (ABCAB
)
\(\pi(6)=3\) (ABCABC
)
同样地,我们发现如果用暴力朴素的想法来统计复杂度是 O(N^2) 不好,于是采用类似于上面的方法,只不过模式串配对的对象是自己罢了。
可以结合代码理解,并注意举例,尝试在纸上模拟这个过程。
for(int i=2,j=0;i<=lenp;i++){
while(j && p[j+1]!=p[i]) j=next_[j]; // 如果j指向元素的下一个元素会和当前配对位置失配,则j跳回去
if(p[j+1]==p[i]) j++; //如果能够配对上,j++
next_[i]=j; //记录当前位置的前缀函数π
}
完整代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
char p[N],s[N];
int next_[N];
int main(){
cin>>s+1>>p+1;
int lenp=strlen(p+1),lens=strlen(s+1);
// build next array
for(int i=2,j=0;i<=lenp;i++){
while(j && p[j+1]!=p[i]) j=next_[j]; // 如果j指向元素的下一个元素会和当前配对位置失配,则j跳回去
if(p[j+1]==p[i]) j++; //如果能够配对上,j++
next_[i]=j; //记录当前位置的前缀函数π
}
for(int i=1,j=0;i<=lens;i++){
while(j && p[j+1]!=s[i]) j=next_[j];
if(p[j+1]==s[i]) j++;
// if match
if(j==lenp){
j=next_[j];
cout<<i-lenp+1<<endl;
}
}
for(int i=1;i<=lenp;i++) cout<<next_[i]<<' ';
cout<<endl;
return 0;
}
复杂度
\(O(N+M)\)
【算法】KMP算法的更多相关文章
- 数据结构与算法--KMP算法查找子字符串
数据结构与算法--KMP算法查找子字符串 部分内容和图片来自这三篇文章: 这篇文章.这篇文章.还有这篇他们写得非常棒.结合他们的解释和自己的理解,完成了本文. 上一节介绍了暴力法查找子字符串,同时也发 ...
- 经典算法 KMP算法详解
内容: 1.问题引入 2.暴力求解方法 3.优化方法 4.KMP算法 1.问题引入 原始问题: 对于一个字符串 str (长度为N)和另一个字符串 match (长度为M),如果 match 是 st ...
- 笔记-算法-KMP算法
笔记-算法-KMP算法 1. KMP算法 KMP算法是一种改进的字符串匹配算法,KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的.具体实现就是实现一 ...
- 值得花费一周研究的算法 -- KMP算法(indexOf)
KMP算法是由三个科学家(kmp分别是他们名字的首字母)创造出来的一种字符串匹配算法. 所解决的问题: 求文本字符串text内寻找第一次出现字符串s的下标,若未出现返回-1. 例如 text : &q ...
- [C++] [算法] KMP算法
KMP串匹配算法是一个经典的算法. 传统BF算法是传统的字符串匹配算法.很好理解.叶实现.但时间复杂度太高. 本文将从字符串模式字符串被称为.为了匹配字符串被称为主弦. KMP配时能够少移动从串的位置 ...
- 程序员必会算法-KMP算法
KMP算法是一种优秀的字符串匹配算法,字符串匹配的常规算法是一步一步进行移位和比较操作,直至找到完全相匹配的字符串. 下面通过一个例子,为大家仔细说明KMP算法的使用和思路: 问题: 在字符串“DEA ...
- 算法 kmp算法
kmp算法是改进后的字符匹配算法,它与bf算法的区别是,每次从串与主串匹配失败后,从串与主串匹配的位置不同. 下面具体说下这两种算法的区别: 主串:BABCDABABCDABCED 从串:ABCDAB ...
- BF算法 + KMP算法
准备: 字符串比大小:比的就是字符串里每个字符的ASCII码的大小.(其实这样的比较没有多大的意义,我们关心的是字符串是否相等,即匹配等) 字符串的存储结构:同线性表(顺序存储+链式存储) 顺序存储结 ...
- 图解算法——KMP算法
KMP算法 解决的是包,含问题. Str1中是否包含str2,如果包含,则返回子串开始位置.否则返回-1. 示例1: Str1:abcd123def Str2:123d 暴力法: 从str1的第一个字 ...
- 字符串匹配算法——KMP算法
处理字符串的过程中,难免会遇到字符匹配的问题.常用的字符匹配方法 1. 朴素模式匹配算法(Brute-Force算法) 求子串位置的定位函数Index( S, T, pos). 模式匹配:子串的定位操 ...
随机推荐
- 解决MyBatis-Plus 3.3.1中自动生成代码tinyint(1)无法自动转换为Boolean 的办法
解决方法 1.在测试类中新建一个类MySqlTypeConvertCustom,继承MySqlTypeConvert并实现ITypeConvert后覆盖processTypeConvert方法. 2. ...
- 浅析Linux用户空间中的Mmap
一.MMap基础概念 mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系.实现这样的映射关系后,进程就可以采 ...
- Vue中:error 'XXXXX' is not defined no-undef解决办法
Vue中:error 'XXXXX' is not defined no-undef解决办法 报错内容: × Client Compiled with some errors in 7.42s √ S ...
- axios用法
1 axios.get('https://api.apiopen.top/getJoke?type=all', { 2 params: {//用于传参 3 type: 'all' 4 } 5 }).t ...
- 在Golang中如何正确地使用database/sql包访问数据库
本文记录了我在实际工作中关于数据库操作上一些小经验,也是新手入门golang时我认为一定会碰到问题,没有什么高大上的东西,所以希望能抛砖引玉,也算是对这个问题的一次总结. 其实我也是一个新手,机缘巧合 ...
- Service Locator Pattern 服务定位
https://www.geeksforgeeks.org/service-locator-pattern/ Service Locator Pattern Last Updated: 06-03-2 ...
- status http status code 状态码
RFC 6585 - Additional HTTP Status Codes https://tools.ietf.org/html/rfc6585 https://developer.mozill ...
- win api 窗口操作-窗口置顶与寻找与激活
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowpos https://docs.micr ...
- WebServices 与 Web API 的区别
WebServices : WebServices 是可以通过 Internet 访问并通过 XML 编码规范其通信的任何服务. 客户通过发送请求(大部分是 XML消息)来召唤 WebServices ...
- vim 查找并替换多个匹配字符
通常我们在使用vim的使用需要查找文档中是否含有需要的字符 1.vim 1.txt进入文档编辑 2.输入/键,再输入需要查找的字符,或者输入?键再输入需要查找的字符 3.查找到后可以enter进去,再 ...