例题

给3x3的格子上色,4种颜色,可以重复。排除旋转后相同的情况,请问有多少种不同的上色方法?

解答

设格子编号如下:

| 1 | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

每种旋转是为一种置换,定义为\(g_i\),共4种置换:

\[g_1 = <旋转0° > \\
g_2 = <旋转90° > \\
g_3 = <旋转180° > \\
g_4 = <旋转270° >
\]

\(D(g_i)\)表示在\(g_i\)这种置换的作用下没有改变状态的方案集合,\(|D(g_i)|\)表示其元素个数。以下分情况讨论:

  • 旋转\(0°\)

    旋转0°怎么都不会变, 计算随便涂的总数即可:
\[|D(g_1)| = 4^9
\]
  • 旋转\(90°\)

    {1、3、7、9}循环变换,{2、4、6、8}循环变换, {5}永远不变,置换群为(1379)(2468)(5),(1379)可取4种颜色,(2468)可以取4种颜色, (5)可以取4种颜色,总方案数:

\[|D(g_2)| = 4^3
\]
  • 旋转\(180°\)

    置换群为(19)(28)(37)(46)(5),总方案数:

\[|D(g_3)| = 4^5
\]
  • 旋转\(270°\)

    类似旋转90°,总方案数:

\[|D(g_4)| = 4^3
\]

根据Burnside引理,设\(G\)为所有置换的集合,总方案数:

\[L=\frac{1}{|G|} \sum_{\mathrm{i}=1}^{|G|}\left|D\left(g_{i}\right)\right| = \frac{1}{4}(4^9+4^3+4^5+4^3)=65824
\]

或直接用Polya定理,设\(m\)种颜色给\(n\)个对象染色,\(C_i\)为每种置换下的循环节,则有:

\[L=\frac{1}{|G|}\left[m^{C_{1}}+m^{C_{2}}+\cdots+m^{C_{g-1}}+m^{C_{g}}\right] = \frac{1}{4}(4^9+4^3+4^5+4^3)=65824
\]

组合数学:Burnside引理和Polya定理解决染色置换问题的更多相关文章

  1. Burnside引理和Polya定理

    转载自:https://blog.csdn.net/whereisherofrom/article/details/79631703 Burnside引理 笔者第一次看到Burnside引理那个公式的 ...

  2. Burnside引理和Polya定理之间的联系

    最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着 ...

  3. 等价类计数:Burnside引理和Polya定理 阐述和相关例题

    本人不确保结果正确性. 类似的题集也很多,比如 https://ac.nowcoder.com/acm/contest/27275#question 我做了部分题目的题解 https://www.cn ...

  4. Burnside引理和polay计数学习小记

    在组合数学中有这样一类问题,比如用红蓝两种颜色对2*2的格子染色,旋转后相同的算作一种.有多少种不同的染色方案?我们列举出,那么一共有16种.但是我们发现,3,4,5,6是同一种,7,8,9,10是用 ...

  5. 置换群和Burnside引理,Polya定理

    定义简化版: 置换,就是一个1~n的排列,是一个1~n排列对1~n的映射 置换群,所有的置换的集合. 经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等. 不动点:一个置换中,置换后和置换前没 ...

  6. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  7. Burnside引理和polay计数 poj2409 Let it Bead

    题目描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ...

  8. Burnside引理与Polya定理 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...

  9. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  10. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

随机推荐

  1. Java 运算符详解与字符串处理技巧

    Java 运算符 算术运算符 算术运算符用于执行常见的数学运算. 运算符 名称 描述 示例 + 加法 将两个值相加 x + y - 减法 从一个值中减去另一个值 x - y * 乘法 将两个值相乘 x ...

  2. 整理k8s————k8s prod相关[三]

    前言 简单整理k8s prod. 正文 prod 有两种: 自主式prod 控制器管理的prod 在Kubernetes中,最小的管理元素不是一个个独立的容器,而是Pod,Pod是最小的,管理,创建, ...

  3. 重新点亮linux 命令树————网络故障排除[十一五]

    前言 简单整理一下网络故障不可达命令. 正文 ping 是否能ping traceroute 追踪路由跳转 mtr 检查数据包是否丢失 nslookup telnet 端口是否可达 tcpdump 能 ...

  4. webpack 打包jquery

    前言 记一次配置webpack jqeury中的案例. 正文 选取自己需要安装的jquery版本号 dependencies:{ //此处的jquery版本根据npm后的版本来看,会有安装版本的提示 ...

  5. leetcode第 181 场周赛

    5364. 按既定顺序创建目标数组 给你两个整数数组 nums 和 index.你需要按照以下规则创建目标数组: 目标数组 target 最初为空. 按从左到右的顺序依次读取 nums[i] 和 in ...

  6. python异步字符串查找,asyncio和marisa_trie

    自然语言处理当中经常需要字符串的查找操作,比如通过查找返回字串在文本当中的位置,比如通过匹配实现的ner import pandas as pd import asyncio # data = pd. ...

  7. .netcore 使用Quartz定时任务

    这是一个使用 .NET Core 和 Quartz.NET 实现定时任务的完整示例.首先确保已经安装了 .NET Core SDK.接下来按照以下步骤创建一个新的控制台应用程序并设置定时任务: 创建一 ...

  8. b站的视频进度条悬浮预览视频画面实现方式

    1.探究 在看b站视频,滑到进度条的时候突发奇想,想知道这个预览图是怎么做到的 打开控制台,发现每次移动鼠标悬浮位置的时候都会发出一条网络请求,并且该请求的size显示来源于内存,当时以为每次加载视频 ...

  9. eBPF技术应用云原生网络实践系列之基于socket的service | 龙蜥技术

    ​简介:如何使用 socket eBPF进一步提升Service 网络的转发性能? ​ 背景介绍 Kubernetes 中的网络功能,主要包括 POD 网络,service 网络和网络策略组成.其中 ...

  10. 独家深度 | 一文看懂 ClickHouse vs Elasticsearch:谁更胜一筹?

    简介: 本文的主旨在于通过彻底剖析ClickHouse和Elasticsearch的内核架构,从原理上讲明白两者的优劣之处,同时会附上一份覆盖多场景的测试报告给读者作为参考. 作者:阿里云数据库OLA ...