BZOJ3209 花神的数论题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。
Input
一个正整数 N。
Output
一个数,答案模 10000007 的值。
Sample Input
Sample Output
HINT
对于样例一,1*1*2=2;
数据范围与约定
对于 100% 的数据,N≤10^15
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL MOD = 10000007;
LL n,C[120][120],ans;
int cnt,k,a[120];
inline LL fast_pow(LL x,LL y){ LL r=1; while(y>0) { if(y&1) r*=x,r%=MOD; x*=x; x%=MOD; y>>=1; } return r; }
inline void work(){
scanf("%lld",&n); while(n>0) { a[++cnt]=n&1; n>>=1; } C[0][0]=1; k=0; ans=1;
for(int i=1;i<=60;i++) { C[i][0]=1; for(int j=1;j<=i;j++) C[i][j]=C[i-1][j]+C[i-1][j-1]/*指数不能直接取模*/; }
for(int i=cnt;i>=1;i--) {
if(a[i]) {
ans*=(k+1); ans%=MOD;
for(int j=1;j<i;j++) ans*=fast_pow(k+j,C[i-1][j]),ans%=MOD;
//枚举i-1位到最低位中的1的个数j,则总共1的个数位j+k,同时出现次数就为C[i-1][j]
k++;//多了一个1
}
}
printf("%lld",ans);
} int main()
{
work();
return 0;
}
BZOJ3209 花神的数论题的更多相关文章
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- BZOJ3209 花神的数论题 【组合数 + 按位计数】
题目 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC -- 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有超级难的神题啦-- 我等蒟蒻又遭殃了. 花神的题目 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
随机推荐
- BitSet构造函数的两种特例
C++11之后,bitset的构造函数新加了两种形式: bitset<bits>::bitset (const string& str, string::size_type str ...
- 【转】JavaScript中的原型和继承
请在此暂时忘记之前学到的面向对象的一切知识.这里只需要考虑赛车的情况.是的,就是赛车. 最近我正在观看 24 Hours of Le Mans ,这是法国流行的一项赛事.最快的车被称为 Le Mans ...
- 史上最全的ASP.NET MVC路由配置
MVC将一个Web应用分解为:Model.View和Controller.ASP.NET MVC框架提供了一个可以代替ASP.NETWebForm的基于MVC设计模式的应用. AD:51CTO 网+ ...
- Atitit.木马病毒websql的原理跟个设计
Atitit.木马病毒websql的原理跟个设计 1. Keyword Wsql { var sql="select "+p.txt+" as t,"+p.v+ ...
- 压缩Sqlite数据文件大小,解决数据删除后占用空间不变的问题
最近有一网站使用Sqlite数据库作为数据临时性的缓存,对多片区进行划分 Sqlite数据库文件,每天大概新增近1万的数据量,起初效率有明显的提高,但历经一个多月后数据库文件从几K也上升到了近160M ...
- mysqldump:Couldn't execute 'show create table `tablename`': Table tablename' doesn't exist (1146)
遇到了一个错误mysqldump: Couldn't execute 'show create table `CONCURRENCY_ERRORS`': Table INVOICE_OLD.CONCU ...
- 使用SignalR实现消息提醒
Asp.net SignalR是微软为实现实时通信的一个类库.一般情况下,SignalR会使用JavaScript的长轮询(long polling)的方式来实现客户端和服务器通信,随着Html5中W ...
- SQLSERVER中正则表达式封装使用
封装好的正则表达式供SQLSERVER调用 打开数据库->可编程性->函数->标量值函数->新建标量值函数名 USE [数据库]GOSET ANSI_NULLS ONGOSET ...
- Autofac在MVC4中牛刀小试
Autofac是传说中速度最快的一套.NET高效的依赖注入框架.Autofac的介绍与使用请去参考Autofac全面解析系列(版本:3.5). 这里介绍的已经挺详细的啦. 下面我就先来说说MVC4 ...
- 关于oracle中数据类型的选择
由于是初学,犯了如下错误: 生成表的主键id时,用当前时间的毫秒值.而在oracle中定义主键id时,用的数据类型是char(32).在mybatis中通过id取数据怎么也取不出来.想了好几天,本来以 ...