题目


分析

按好看度从大到小排序,每次选择一个尽量大的外径装入当前套娃的内径,

这样可以保证是最优的,删除选完的外径可以用平衡树实现


代码

#include <cstdio>
#include <cctype>
#include <set>
#include <algorithm>
#define rr register
using namespace std;
const int N=200011;
multiset<int>uk;
multiset<int>::iterator it;
int l[N],r[N],rk[N],n;
long long a[N],ans;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
bool cmp(int x,int y){return a[x]>a[y];}
signed main(){
n=iut();
for (rr int i=1;i<=n;++i){
r[i]=iut(),l[i]=iut(),a[i]=iut(),
rk[i]=i,uk.insert(r[i]),ans+=a[i]*l[i];
}
sort(rk+1,rk+1+n,cmp);
for (rr int i=1;i<=n;++i){
it=uk.lower_bound(l[rk[i]]);
if (it!=uk.begin()) --it,ans-=a[rk[i]]*(*it),uk.erase(it);
}
return !printf("%lld",ans);
}

#贪心#洛谷 6093 [JSOI2015]套娃的更多相关文章

  1. BZOJ4482[Jsoi2015]套娃——贪心+set

    题目描述 [故事背景] 刚从俄罗斯旅游回来的JYY买了很多很多好看的套娃作为纪念品!比如右 图就是一套他最喜欢的套娃J.JYY由于太过激动,把所有的套娃全 部都打开了.而由于很多套娃长得过于相像,JY ...

  2. 洛谷 P5502 - [JSOI2015]最大公约数(区间 gcd 的性质+分治)

    洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区 ...

  3. 洛谷 P6082 [JSOI2015]salesman

    题意 给定一棵\(n\)个点的树,有点权,你从\(1\)号点开始一次旅行,最后回到\(1\)号点.每到达一个点,你就能获得等于该点点权的收益, 但每个点都有进入该点的次数限制,且每个点的收益只能获得一 ...

  4. 洛谷 P6075 [JSOI2015]子集选取

    链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...

  5. 「JSOI2015」套娃

    「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...

  6. 洛谷$P4040\ [AHOI2014/JSOI2014]$宅男计划 贪心

    正解:三分+贪心 解题报告: 传送门$QwQ$ 其实很久以前的寒假就考过了,,,但那时候$gql$没有好好落实,就只写了个二分,并没有二分套三分,就只拿到了$70pts$ #include <b ...

  7. 洛谷P2617 Dynamic Ranking(主席树,树套树,树状数组)

    洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真 ...

  8. 洛谷P3602 Koishi Loves Segments(贪心,multiset)

    洛谷题目传送门 贪心小水题. 把线段按左端点从小到大排序,限制点也是从小到大排序,然后一起扫一遍. 对于每一个限制点实时维护覆盖它的所有线段,如果超过限制,则贪心地把右端点最大的线段永远删去,不计入答 ...

  9. 洛谷P4155 [SCOI2015]国旗计划(贪心,树形结构,基数排序)

    洛谷题目传送门 \(O(n)\)算法来啦! 复杂度优化的思路是建立在倍增思路的基础上的,看看楼上几位巨佬的描述吧. 首先数组倍长是一样的.倍增法对于快速找到\(j\)满足\(l_j+m\le r_i\ ...

  10. 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)

    洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...

随机推荐

  1. 【Azure Developer】Azure REST API: 如何通过 API查看 Recovery Services Vaults(恢复保管库)的备份策略信息? 如备份中是否含有虚拟机的Disk

    问题描述 如何通过 API查看 Recovery Services Vaults(恢复保管库)的备份策略信息? 如备份中是否含有虚拟机的Disk.在Azure门户中可以通过查看Backup Item查 ...

  2. 【Azure 应用服务】Function App中的函数(Functions)删除问题

    问题描述 Function App 中的函数如何删除问题 问题分析 1)在Function App的门户上,点击"Delete"进行删除 2) 进入Function App的高级管 ...

  3. 关闭mysql上锁的表/数据

    一.输入查询语句,查看是否有数据被上锁 select * from information_schema.innodb_trx; 取 trx_mysql_thread_id 字段值 kill < ...

  4. Java 常用类 String类与其他结构之间的转换-----String 与 基本数据类型,包装类之间的转换

    1 /* 2 涉及到String类与其他结构之间的转换 3 4 */ 5 6 //String 与 基本数据类型,包装类之间的转换 7 //String --->基本数据类型,包装类:调用包装类 ...

  5. 如何查看apk安装包源代码??Android反编译apk,解包,打包,签名一体化实测 ,修改图片音频软件名称版本号等入门

    首先下载反编译工具包 下载地址 链接:  https://zly520.lanzoui.com/ibtuxhf7rab 一.反编译工具介绍 首先 如果你想改动图片音频之类的,见末尾! 1.apktoo ...

  6. .NET Core 的 Docker 容器目录乱码问题

    现象 使用 docker exec -ti <容器名> bash 进入容器,使用 ls 命令列出的数据里面,中文没有正常显示. 原因 就是对应的 Shell 字符集不正确的问题,调整对应的 ...

  7. 3 - 任务调度算法 & 同步与互斥 &队列

    之前的都是按照优先级不同允许抢占(不讲道理),不管你在做什么,轮到优先级最高的任务,直接抢占执行 怎样才能讲道理呢?稍微等等嘛,等我做完活你再做   1 支持抢占,0不支持抢占  同优先级任务是否交替 ...

  8. vscode 文件上传快捷键 shift+alt+s (ftp专用)插件用的 ftp-sync

    vscode 文件上传快捷键 shift+alt+s (ftp专用)插件用的 ftp-sync { "key": "shift+alt+s", "co ...

  9. Python爬虫实战系列3:今日BBNews编程新闻采集

    一.分析页面 打开今日BBNews网址 https://news.bicido.com ,下拉选择[编程]栏目 1.1.分析请求 F12打开开发者模式,然后点击Network后点击任意一个请求,Ctr ...

  10. 阿里云配置http转https

    参考:https://www.cnblogs.com/alexfly/p/10615986.htmlhttps://www.cnblogs.com/SemiconductorKING/p/910697 ...