1、背景

魔笛活动平台目前在采集每个活动的用户行为数据并进行查询,解决线上问题定位慢,响应不及时的问题,提升客诉的解决效率。目前每天采集的数据量5000万+,一个月的数据总量15亿+,总数据量40亿+,随着接入的活动越来越多,采集上报的数据量也会越来越大。目前采用ClickHouse来存储数据,可以在秒级别内处理数十亿条数据,能够达到50MB-200MB/s的写入吞吐能力,按照每行100Byte估算,大约相当于50W-200W条/s的写入速度。这里关于ClickHouse就不再赘述,感兴趣的可以看上篇文章。这里是我在实际使用过程中,发现了一些写入和查询的相关问题,并进行了相应的优化。

2、写入优化

2.1 历史方案

为了更好的收集活动数据,自己开发了一款埋点sdk用于收集各业务的活动埋点数据,埋点数据统一异步发送MQ,然后活动平台消费MQ数据,经过一定处理后通过MybatisPlus方式批量写入clickhouse,每次批量写入5000条。

2.2 出现的问题

当消费MQ的TPS超过3000的时候,出现了以下问题:

1. 出现报错:写入量大的时候会报这个错误:too many parts。

2. 单次写入条数少:我明明配置的每次批量写入5000条,但是每次基本都是一条一条写入。

3. 性能很差:单次写入最大耗时居然有250000毫秒,平均也超过50000毫秒!

2.3 出现问题的原因

(1)单次写入条数少原因:MybatisPlus的savebatch单次最大写入SQL是4M,按照单条活动的数据大小,最大单次也就写1000条数据,再多就会一次一次写入。所以虽然配置的是每次写入5000,但是实际看是每次写入一条或者几条。

(2)too many parts错误:clickhouse操作数据的最小操作单元是block,每次写入都会按照zookeeper记录的唯一自增的blockId,按照PartitionId_blockId_blockId_0生成data parts,也就是小文件,然后后台会有merge线程,不定时(分钟级别)的将多个小文件进行合并,生成PartitionId_MinBlockNum_MaxBlockBum_Level的文件,未达到data parts最小rows或者大小限制前,会持续merge,每次merge的耗时大概5分钟左右。由于merge线程池是固定的,默认32,所以如果插入过于频繁,merge压力过大,处理不了,就会出现too many parts的报错。例如并发数为 200,这样一批写入到 ClickHouse 中就会产生 200 个文件,几批下来如果 ClickHouse 内部线程没来及合并相同分区,就会抛异常。而 ClickHouse 默认一次合并超过 300 个文件就会报错。

(3)性能差的原因:因为写clickhouse底层都是使用httpclient的方式写入的,所以对于clickhouse来说单条频繁写入效率很低。

2.4 改造方案

(1)写入clickhouse的并发数调小,批处理的数据size间隔调大,比如之前200并发调整到50并发,从之前一批1条数据调整到10000条数据,clickhouse官网建议每批次写入100000+条(要视flink TM 内存大小调整,防止批量过大出现oom)。从而减少clickhouse文件的个数,避免超过parts_to_throw_insert默认值。一般最好一秒钟写入一次clickhouse。

(2)将由MybatisPlus的savebatch批量写入改为其他方式写入。采用clickhouse原生的jdbc写入或者flink摄入,flink我这边自定义了sink 用于摄入clickhouse,达到一定批次或者执行checkpoint时就写入一次。

(3)为了保证批量,我这边采用实时双buffer缓冲队列方式写入,这个队列可以是本地缓存队列,也可以是redis缓存队列。根据时间窗口期和固定写入阈值(针对波动大的可以按照二次指数平滑函数去确定阈值)进行写入与否的判断。设置一个读队列,一个写队列,并设置一个开关,一个阈值,一个定时器,当数据来时,默认放入写队列中,当队列中数据的数量大于阈值,将开关关闭,将写队列数据放到读队列中,从读队列拿出数据批量写入clickhouse,将开关打开,清空队列中数据。如果队列中数据在一定时间内,比如10秒,一直没有达到阈值,也关闭开关,写队列数据放到读队列中,从读队列拿出数据批量写入clickhouse,将开关打开,清空队列中数据。

2.5 效果

MQ消费的TPS最高是2万+,也就是每秒写入的条数最高超过了俩万,在此情况下,保证了每秒只写入clickhouse一次,写入性能也稳定在50毫秒左右,写入性能相比较于之前方案提升了5000倍,吞吐量相较于之前也提升了几十倍。

3、查询优化

3.1 历史方案

索引:一级索引是时间,二级索引是id,因为大部分是根据时间来查询,id作为排序。

字段值:写入时候将字段值默认为空。

查询:查询时候查询所有列的数据,再线性查询每条数据的活动信息、奖励信息等。

3.2 出现的问题

目前生产环境有40亿+数据,耗时很长,达到了30秒,非常非常慢。

3.3 出现问题的原因

尝试通过SQL执行计划来确定一个sql 的查询瓶颈。目前查看sql 执行计划有两种方法:

方法一(20.6之前版本):clickhouse-client -u xxxx --password xxxxxx --send_logs_level=trace <<< 'your query sql' > /dev/null;

方法二(20.6与20.6之后版本):explain SQL。

方法一是指定clickhouse 执行日志级别为trace,这样可以打印出来sql 各个阶段执行的日志,通过日志型来分析SQL执行情况,能够详细的了解到SQL执行情况。方法二有点像mysql那样,但这个只能打印部分SQL执行情况,不够详细。所以我们最终使用了方法一。

通过分析发现这几方面原因:

(1)查询缓慢的都是固定维度查询的,例如:用户pin、活动id等。分析了查询sql 的执行计划,主键索引和分区都没有用到。没有用到主键索引是导致查询慢的主要原因。至于为什么,这个要从clickhouse的底层存储结构说了,这里不详细说明,想了解的可以去看看我上篇文章。

(2)因为ClickHouse对于空值,在底层存储是用了单独的文件存储。相对于没有空值的情况,存在空值会稍微影响查询性能。

(3)没有分区查询,跟hive一样,表分区后,底层也会有相关的分区目录,筛选的时候添加分区过滤,提升查询性能。

3.4 改造方案

1.索引优化:clickhouse 的存储结构决定对于大数据量查询时,使用主键索引能够精确的找到所需的数据块,减少不必要的数据块扫描,这样更够极大的提高查询效率。将用户pin作为一级索引,将时间作为二级索。
2.填充有空值的字段:对于一些表字段,若存在空值,则可以考虑使用无业务场景意义的字符进行填充。
3.主键查询:减少查询字段:将select * 改为查询关键字段,select operate_time,id。
4.多线程:多条活动数据,多线程查询出活动和奖励的相关信息。
5.分区存储:将每7天数据放入一个分区中,查询时候根据不同时间查询不同分区的数据。
6.count优化:因为clickhouse对每个表的数据量,在底层文件中提供了预数据。所以能直接使用count()则避免使用count(col_name)。
7.聚合外推:如将sum(money * 2) 变成 sum(money) * 2。对数据库来说,后者的计算量明显少一点。
8.高级函数:ClickHouse中有很多很好用的函数。如:使用multiIf()替代多重case when,对于版本数据的获取使用argMax()函数,而非用子查询关联取最大值

3.5 效果

40亿+的数据量,由之前13-20秒提升为800-1200毫秒返回,约提升15-20倍。

4、思考

如果后续数据量超过百亿,达到几百亿甚至千亿级别的数据量,性能还会不会这么好呢?这时候可以考虑分表策略,将用户pin进行hash,例如分十张表存储数据,将每张表数据控制在50-100亿级别。在数据写入这块,使用分表了策略后还需要自定义分表摄入的策略。

作者:京东科技 苗元

来源:京东云开发者社区 转载请注明来源

clickhouse 优化实践,万级别QPS数据毫秒写入和亿级别数据秒级返回 | 京东云技术团队的更多相关文章

  1. 字节跳动基于ClickHouse优化实践之“多表关联查询”

    更多技术交流.求职机会.试用福利,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 相信大家都对大名鼎鼎的ClickHouse有一定的了解了,它强大的数据分析性能让人印象深刻.但在字节大量 ...

  2. 技术干货:实时视频直播首屏耗时400ms内的优化实践

    本文由“逆流的鱼yuiop”原创分享于“何俊林”公众号,感谢作者的无私分享. 1.引言 直播行业的竞争越来越激烈,进过2018年这波洗牌后,已经度过了蛮荒暴力期,剩下的都是在不断追求体验.最近正好在做 ...

  3. 让Elasticsearch飞起来!——性能优化实践干货

    原文:让Elasticsearch飞起来!--性能优化实践干货 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog ...

  4. 融云技术分享:融云安卓端IM产品的网络链路保活技术实践

    本文来自融云技术团队原创分享,原文发布于“ 融云全球互联网通信云”公众号,原题<IM 即时通讯之链路保活>,即时通讯网收录时有部分改动. 1.引言 众所周知,IM 即时通讯是一项对即时性要 ...

  5. 京东云开发者|京东云RDS数据迁移常见场景攻略

    云时代已经来临,云上很多场景下都需要数据的迁移.备份和流转,各大云厂商也大都提供了自己的迁移工具.本文主要介绍京东云数据库为解决用户数据迁移的常见场景所提供的解决方案. 场景一:数据迁移上云 数据迁移 ...

  6. 虎牙在全球 DNS 秒级生效上的实践 集群内通过 raft 协议同步数据,毫秒级别完成同步。

    https://mp.weixin.qq.com/s/9bEiE4QFBpukAfNOYhmusw 虎牙在全球 DNS 秒级生效上的实践 原创: 周健&李志鹏 阿里巴巴中间件 今天

  7. 【DataMagic】如何在万亿级别规模的数据量上使用Spark

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...

  8. 从 ClickHouse 到 ByteHouse:实时数据分析场景下的优化实践

    本文来自火山引擎公众号,原文发布于2021-09-06. 近日,字节跳动旗下的企业级技术服务平台火山引擎正式对外发布「ByteHouse」,作为 ClickHouse 企业版,解决开源技术上手难 &a ...

  9. Redis各种数据结构性能数据对比和性能优化实践

    很对不起大家,又是一篇乱序的文章,但是满满的干货,来源于实践,相信大家会有所收获.里面穿插一些感悟和生活故事,可以忽略不看.不过听大家普遍的反馈说这是其中最喜欢看的部分,好吧,就当学习之后轻松一下. ...

  10. 如何在万亿级别规模的数据量上使用Spark

    一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...

随机推荐

  1. 用GaussDB(for Redis)存画像,推荐业务轻松降本60%

    摘要:用户画像存储是推荐业务核心,但开源Redis无法胜任.华为云高斯Redis是最佳存储选型,轻松降本60%,同时获得企业级高稳定性. 本文分享自华为云社区<华为云GaussDB(for Re ...

  2. 详解MRS CDL整体架构设计

    摘要:MRS CDL是FusionInsight MRS推出的一种数据实时同步服务,旨在将传统OLTP数据库中的事件信息捕捉并实时推送到大数据产品中去,本文档会详细为大家介绍CDL的整体架构以及关键技 ...

  3. 讲透学烂二叉树(二):图中树的定义&各类型树的特征分析

    日常中我们见到的二叉树应用有,Java集合中的TreeSet和TreeMap,C++ STL中的set.map,以及Linux虚拟内存的管理,以及B-Tree,B+-Tree在文件系统,都是通过红黑树 ...

  4. 熔断、限流、降级 —— SpringCloud Alibaba Sentinel

    Sentinel 简介 Sentinel 是阿里中间件团队开源的,面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流.流量整形.熔断降级.系统负载保护.热点防护等多个维度来帮助开发者保 ...

  5. Ansible--批量创建lvm

    --- - hosts: all tasks: - block: - name: 创建1000M的逻辑卷lv1 lvol: vg: vg0 lv: lv1 size: 1000 - name: 逻辑卷 ...

  6. 关于改造维护工单BAPI_ALM_ORDER_MAINTAIN用于生产订单组件批量修改

    1.研究背景 1.1.业务背景 由于销售.研发.工艺等需要频繁变更,导致工单中组件需要频繁的进行变更,修改组件的物料,数量,库存地点,工序等内容. 1.2.技术痛点 为了满足要求,使用了函数:CO_X ...

  7. Socket | 大小端问题和网络字节序转换函数

    不同 CPU 中,4 字节整数 1 在内存空间的存储方式是不同的.4 字节整数 1 可用 2 进制表示如下: 00000000 00000000 00000000 00000001 有些 CPU 以上 ...

  8. 【每日一题】35. [CQOI2009]中位数图 (前缀和,贡献值计算)

    补题链接:Here 算法涉及:前缀和,贡献值计算 经典中位数计数问题,记得以前百度之星也出过类似的题,这道题有一个限定范围是要奇数区间的 我们很容易想到,奇数下标到偶数下标或者偶数下标到奇数下标的长度 ...

  9. Python | 解放双手,用Python实现自动发送邮件

    解放双手,用Python实现自动发送邮件 使用Python实现自动化邮件发送,可以让你摆脱繁琐的重复性业务,节省非常多的时间. Python有两个内置库:smtplib和email,能够实现邮件功能, ...

  10. vivo平台化实践探索之旅-平台产品系列01

    vivo 互联网平台产品研发团队- Yang Yang 本篇为<vivo 平台产品>系列文章的第1篇.主要描述在业务高速发展的背景下,vivo软件工程师通过系统平台化建设等手段,逐步解决软 ...