Since you are a good friend of Jaber and Eyad, they are asking for your help to solve this problem.

You are given a graph consisting of \(n\) nodes, which initially has no edges. For each node \(i\),there's a string \(s_i\)

of lowercase Latin letters written on it.

You have to process \(q\) queries of two types:

  • 1 \(u\) \(v\) : it means add an edge between node uand node v.
  • 2 \(u\) \(t\) : it means for node \(u\) and string \(t\), output the sum of \(cnt_v\) over all nodes \(v\) which belong to the same component as \(u\),where \(cnt_v\) is the number of times \(s_v\) occurs in \(t\) as a substring.

It is guaranteed that the sum of lengths of sv doesn't exceed \(5\times10^5\), and sum of lengths of the query strings doesn't exceed \(5\times10^5\)

1 二进制分组

合并的时候,AC 自动机很难合并,所以考虑定期重构。

对每个点开一个栈,分别表示 \(2^i\) 个串的合并。加入栈时,如果同时存在两个有 \(2^i\) 个串的时候就把他重构成一个 \(2^{i+1}\) 的串。观察到每个串都会被重构 \(\log n\) 次,算上重构,复杂度就 \(O(|S_i|log n|\Sigma|)\)

2.线段树合并。

由于一开始就把所有的串给了出来,所以可以直接给他跑一个 AC 自动机,弄出fail 树。

考虑我后面的询问需要知道什么,需要知道这个点在 fail 树上有多少个祖先是和 \(x\) 在同一个连通块里面的。所以可以用线段树合并去维护这个东西。在第 \(x\) 棵线段树上把 \(dfn_x,dfn_x+sz_x-1\) 这段区间赋值成 \(1\),然后进行线段树合并,单点查询就可以得到答案了。

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+5,M=2e5+5;;
int idx,tr[N][26],tme=-1,hd[N],dfn[N],sz[N],u,v,fa[N],op,n,fil[N],q[N],l,r,e_num;
long long ans;
char str[N];
struct edge{
int v,nxt;
}e[N<<1];
string s[M];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
int read()
{
int s=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
struct segment{
int rt[M],tr[N*30],lc[N*30],rc[N*30],idx;
int merge(int u,int v)
{
if(!u||!v)
return u|v;
tr[u]+=tr[v];
lc[u]=merge(lc[u],lc[v]);
rc[u]=merge(rc[u],rc[v]);
return u;
}
void upd(int&o,int l,int r,int x,int y)
{
if(!o)
o=++idx;
if(x<=l&&r<=y)
{
tr[o]++;
return;
}
int md=l+r>>1;
if(md>=x)
upd(lc[o],l,md,x,y);
if(md<y)
upd(rc[o],md+1,r,x,y);
}
int qry(int&o,int l,int r,int x)
{
if(!o)
return 0;
if(l==r)
return tr[o];
int md=l+r>>1;
if(md>=x)
return qry(lc[o],l,md,x)+tr[o];
return qry(rc[o],md+1,r,x)+tr[o];
}
void mge(int x,int y)
{
rt[y]=merge(rt[y],rt[x]);
}
}b;
void insert(string s,int x)
{
int u=0;
for(int i=0;i<s.size();i++)
{
if(!tr[u][s[i]-'a'])
tr[u][s[i]-'a']=++idx;
u=tr[u][s[i]-'a'];
}
}
void build()
{
l=1,r=0;
for(int i=0;i<26;i++)
if(tr[0][i])
q[++r]=tr[0][i];
while(l<=r)
{
for(int i=0;i<26;i++)
{
if(tr[q[l]][i])
fil[q[++r]=tr[q[l]][i]]=tr[fil[q[l]]][i];
else
tr[q[l]][i]=tr[fil[q[l]]][i];
}
++l;
}
for(int i=1;i<=idx;i++)
add_edge(fil[i],i);
}
void sou(int x)
{
dfn[x]=++tme,sz[x]=1;
for(int i=hd[x];i;i=e[i].nxt)
sou(e[i].v),sz[x]+=sz[e[i].v];
}
int find(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
scanf("%s",str),insert(s[i]=str,fa[i]=i);
build();
sou(0);
for(int i=1;i<=n;i++)
{
int u=0;
for(int j=0;j<s[i].size();j++)
u=tr[u][s[i][j]-'a'];
b.upd(b.rt[i],0,idx,dfn[u],dfn[u]+sz[u]-1);
}
int q=read();
while(q--)
{
op=read();
if(op==1)
{
u=read(),v=read();
if(find(u)^find(v))
{
b.mge(find(u),find(v));
fa[find(u)]=find(v);
}
}
else
{
ans=0;
u=read(),scanf("%s",str);
u=find(u);
int k=0;
for(int i=0;str[i];i++)
{
k=tr[k][str[i]-'a'];
ans+=b.qry(b.rt[u],0,idx,dfn[k]);
}
printf("%lld\n",ans);
}
}
}
  1. Kruskal重构树。

给询问他建一个 kruskal 重构树,然后一次询问在 kruskal 重构树上是一段连续区间 \([l,r]\) 的询问,可以拆成 \(l-1\) 和 \(r\) 的询问,不断给线段树中加入元素,回答询问即可。

[gym104542F] Interesting String Problem的更多相关文章

  1. FZU - 2218 Simple String Problem(状压dp)

    Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...

  2. hdu String Problem(最小表示法入门题)

    hdu 3374 String Problem 最小表示法 view code#include <iostream> #include <cstdio> #include &l ...

  3. HDU 3374 String Problem(KMP+最大/最小表示)

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. 【HDU3374】 String Problem (最小最大表示法+KMP)

    String Problem Description Give you a string with length N, you can generate N strings by left shift ...

  5. HDOJ3374 String Problem 【KMP】+【最小表示法】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. HDU 3374 String Problem (KMP+最大最小表示)

    HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  7. String Problem hdu 3374 最小表示法加KMP的next数组

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. ACM-ICPC2018南京赛区 Mediocre String Problem

    Mediocre String Problem 题解: 很容易想到将第一个串反过来,然后对于s串的每个位置可以求出t的前缀和它匹配了多少个(EXKMP 或者 二分+hash). 然后剩下的就是要处理以 ...

  9. hdu3374 String Problem【最小表示法】【exKMP】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  10. hdu 5772 String problem 最大权闭合子图

    String problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5772 Description This is a simple pro ...

随机推荐

  1. 深入理解Linux内核——内存管理(2)

    提要:本系列文章主要参考MIT 6.828课程以及两本书籍<深入理解Linux内核> <深入Linux内核架构>对Linux内核内容进行总结. 内存管理的实现覆盖了多个领域: ...

  2. 使用flask开发web应用

    Flask环境搭建 要开发flash应用,我们需要做一些准备工作 我写了个初始化的脚本 Pip_init.sh来安装初始工作 可以到我的git上去下载该脚本进行初始化安装 要启动flask应用,我们需 ...

  3. EQ 均衡器

    EQ 的全称是 Equalizer,EQ 是 Equalizer 的前两个字母,中文名字叫做"均衡器".最早是用来提升电话信号在长距离的传输中损失的高频,由此得到一个各频带相对平衡 ...

  4. Django框架项目之课程主页——课程页页面、课程表分析、课程表数据、课程页面、课程接口、前台、后台

    文章目录 1-课程页页面 课程组件 2 课程主页之课程表分析 课程表分析 免费课案例 创建models:course/models.py 注册models:course/adminx.py 数据库迁移 ...

  5. Python基础——二分法、面向过程编程思想、有名函数、lambda、max、_min的应用、sorted排序、map的应用、filter的应用、reduce的应用

    文章目录 内容回顾 二分法 伪代码模板 面向过程编程思想 函数式 def用于定义有名函数 lambda用于定义匿名函数 调用匿名函数 匿名函数作用 匿名函数的示范 max的应用 min的应用 sort ...

  6. 时髦称呼:SQL递归"语法糖"的用法

    Oracle函数sys_connect_by_path 详解 语法:Oracle函数:sys_connect_by_path 主要用于树查询(层次查询) 以及 多列转行.其语法一般为:       s ...

  7. P8741 [蓝桥杯 2021 省 B] 填空问题 题解

    P8741 [蓝桥杯 2021 省 B] 填空问题 题解 题目传送门 欢迎大家指出错误并联系这个蒟蒻 更新日志 2023-05-09 23:19 文章完成 2023-05-09 23:20 通过审核 ...

  8. C#版字节跳动SDK - SKIT.FlurlHttpClient.ByteDance

    前言 在我们日常开发工作中对接第三方开放平台,找一款封装完善且全面的SDK能够大大的简化我们的开发难度和提高工作效率.今天给大家推荐一款C#开源.功能完善的字节跳动SDK:SKIT.FlurlHttp ...

  9. Prometheus+Grafana实现服务性能监控:windows主机监控、Spring Boot监控、Spring Cloud Alibaba Seata监控

    1.Prometheus介绍 Prometheus使用Go语言开发,中文名称叫:普罗 米修斯.Prometheus是一个开源系统最初在SoundCloud构建的监控和警报工具包.自 2012 年成立以 ...

  10. [Python急救站课程]健康食谱搭配

    健康食谱搭配输出 diet = ['西红柿', '花椰菜', '黄瓜', '牛排', '虾仁'] for x in range(0, 5): for y in range(0, 5): if not ...