简介:本文主要介绍netflix conductor的基本概念和主要运行机制。

作者 | 夜阳

来源 | 阿里技术公众号

本文主要介绍netflix conductor的基本概念和主要运行机制。

一 简介

netflix conductor是基于JAVA语言编写的开源流程引擎,用于架构基于微服务的流程。它具备如下特性:

  • 允许创建复杂的业务流程,流程中每个独立的任务都是由一个微服务所实现。
  • 基于JSON DSL 创建工作流,对任务的执行进行编排。
  • 工作流在执行的过程中可见、可追溯。
  • 提供暂停、恢复、重启等多种控制模型。
  • 提供一种简单的方式来最大限度重用微服务。
  • 拥有扩展到百万流程并发运行的服务能力。
  • 通过队列服务实现客户端与服务端的分离。
  • 支持 HTTP 或其他RPC协议进行数据传送

二 基本概念

1 Task

Task是最小执行单元,承载了一段执行逻辑,如发送HTTP请求等。

  • System Task:被conductor服务执行,这些任务的执行与引擎在同一个JVM中。
  • Worker Task:被worker服务执行,执行与引擎隔离开,worker通过队列获取任务后,执行并更新结果状态到引擎。Worker的实现是跨语言的,其使用Http协议与Server通信。

conductor提供了若干内置SystemTask:

  • 功能性Task:

    • HTTP:发送http请求
    • JSON_JQ_TRANSFORM:jq命令执行,一般用户json的转换,具体可见jq官方文档
    • KAFKA_PUBLISH: 发布kafka消息
  • 流程控制Task:

    • SWITCH(原Decision):条件判断分支,类似于代码中的switch case
    • FORK:启动并行分支,用于调度并行任务
    • JOIN:汇总并行分支,用于汇总并行任务
    • DO_WHILE:循环,类似于代码中的do while
    • WAIT:一直在运行中,直到外部时间触发更新节点状态,可用于等待外部操作
    • SUB_WORKFLOW:子流程,执行其他的流程
    • TERMINATE:结束流程,以指定输出提前结束流程,可以与SWITCH节点配合使用,类似代码中的提前return语句
  • 自定义Task:

    • 对于System Task,Conductor提供了WorkflowSystemTask 抽象类,可以自定义扩展实现。
    • 对于Worker Task,可以实现conductor的client Worker接口实现执行逻辑。

2 Workflow

  • Workflow由一系列需要执行的Task组成,conductor采用json来描述Task的流转关系。
  • 除基本的顺序流程外,借助内置的SWITCH、FORK、JOIN、DO_WIHLE、TERMINATE任务,还能实现分支、并行、循环、提前结束等流程控制。

3 Input&Output

Task的输入是一种映射,其作为工作流实例化的一部分或某些其他Task的输出。允许将来自工作流或其他Task的输入/输出作为随后执行的Task的输入。

  • Task有自己的输入和输出,输入输出都是jsonobject类型。
  • Task可以引用其他Task的输入输出,使用${taskxxx.output}的方式引用。引用语法为json-path,除最基础的${taskxxx.output}的值解析方式外,还支持其他复杂操作,如过滤等,具体见json-path语法。
  • 启动Workflow时可以传入流程的输入数据,Task可以通过${workflow.input}的方式引用。

Task实现原子操作的处理以及流程控制操作,Workflow定义描述Task的流转关系,Task引用Workflow或者其它Task的输入输出。通过这些机制,conductor实现了JSON DSL对流程的描述。

三 整体架构

主要分为几个部分:

  • Orchestrator: 负责流程的流转调度工作;
  • Management/Execution Service: 提供流程、任务的管理更新等操作;
  • TaskQueues: 任务队列,Orchestrator解析出来的待执行Task会放到队列中;
  • Worker: 任务执行worker,从TaskQueues中获取任务,通过Execution Service更新任务状态与结果数据;
  • Database: 元数据&运行时数据库,用于保存运行时的Workflow、Task等状态信息,以及流程任务定义的等原信息;
  • Index: 索引数据库,用于存储执行历史;

四 运行模型

1 Task状态转移

  • SCHEDULED:待调度,task放到队列中还没有被poll出来执行时的状态
  • IN_PROGRESS:执行中,被poll出来执行但还没有完成时的状态
  • COMPLETED:执行完成
  • FAILED:执行失败
  • CANCELLED:被中止时为此状态,一般出现在两种情况:

    1. 手动中止流程时,正在运行中的task会被置为此状态;
    2. 多个fork分支,当某个分支的task失败时,其它分支中正在运行的task会被置为此状态;

2 任务队列

任务的执行(同步的系统任务除外)都会先添加到任务队列中,是典型的生产者消费者模式。

  • 任务队列,是一个带有延迟、优先级功能的队列;
  • 每种类型的Task是一个单独的队列,此外,如果配置了domain、isolationGroup,还会拆分成多个队列实现执行隔离;
  • decider service是生产者,其根据流程配置与当前执行情况,解析出可执行的task后,添加到队列;
  • 任务执行器(SystemTaskWorker、Worker)是消费者,其长轮询对应的队列,从队列中获取任务执行;

队列接口可插拔,conductor提供了Dynomite 、MySQL、PostgreSQL的实现。

3 核心功能实现机制

conductor调度的核心是decider service,其根据当前流程运行的状态,解析出将要执行的任务列表,将任务入队交给worker执行。

decide主要流程简化如下,详细代码见WorkflowExecutor.java的decide方法:

其中,调度任务处理流程简化如下,详细代码见WorkflowExecutor.java的scheduleTask方法:

decide的触发时机

最主要的触发时机:

  1. 新启动执行时,会触发decide操作
  2. 系统任务执行完成时,会触发decide操作
  3. Workder任务通过ExecutionService更新任务状态时,会触发decide操作

流程控制节点的实现机制

1)Task & TaskMapper

对于每一个Task来说,都有Task和TaskMapper两部分:

  1. Task:任务的执行逻辑代码,它的作用是Task的执行
  2. TaskMapper:任务的映射逻辑代码,它通过Task的定义配置、当前实例的执行状态等信息,返回实际需要执行的Task列表

对于一般的任务来说,TaskMapper返回的是就是Task本身,补充一些执行实例的状态信息。但是对于控制节点来说,会有不同的逻辑。

2)条件分支(SWITCH)的实现机制

SWITCH用于根据条件判断,执行不同的分支。

实际上,该节点的Task不做任何操作,TaskMapper根据分支条件,判断出要走的分之后,返回对应分支的第一个Task。

SwitchTaskMapper.java getMappedTasks方法关键代码:

// 待调度的Task list,最终返回结果
List<Task> tasksToBeScheduled = new LinkedList<>();
// evalResult是分支条件变量的值(case)
// decisionCases是一个Map结构,key为分支的case值,value为对应分支的任务定义list(分支内的任务定义会有多个)
// 根据分支变量的实际值,获取对应分支的任务定义list
List<WorkflowTask> selectedTasks = taskToSchedule.getDecisionCases().get(evalResult);
// default的逻辑:如果获取不到对应的分支或者分支为空,则用默认的分支
if (selectedTasks == null || selectedTasks.isEmpty()) {
selectedTasks = taskToSchedule.getDefaultCase();
}
if (selectedTasks != null && !selectedTasks.isEmpty()) {
// 获取分支的第一个(下标0)task,返回给decider service去做调度(decider会把任务添加到队列里,交给worker去执行)
WorkflowTask selectedTask = selectedTasks.get(0);
// 调用了deciderService的getTasksToBeScheduled方法,此方法里又获取到TaskMapper调用了getMappedTasks。这里采用了递归调用的方式,解析嵌套的Task
List<Task> caseTasks = taskMapperContext.getDeciderService()
.getTasksToBeScheduled(workflowInstance, selectedTask, retryCount, taskMapperContext.getRetryTaskId());
tasksToBeScheduled.addAll(caseTasks);
switchTask.getInputData().put("hasChildren", "true");
}
return tasksToBeScheduled;

3)并行(FORK)的实现机制

FORK用于开启多个并行分支。

实际上,该节点的Task不做任何操作,TaskMapper返回所有并行分支的第一个Task。

ForkJoinTaskMapper.java getMappedTasks关键代码:

// 待调度的Task list,最终返回结果
List<Task> tasksToBeScheduled = new LinkedList<>();
// 配置中的所有fork分支
List<List<WorkflowTask>> forkTasks = taskToSchedule.getForkTasks();
for (List<WorkflowTask> wfts : forkTasks) {
// 每个分支取第一个Task
WorkflowTask wft = wfts.get(0);
// 调用了deciderService的getTasksToBeScheduled方法,此方法里又获取到TaskMapper调用了getMappedTasks。这里采用了递归调用的方式,解析嵌套的Task
List<Task> tasks2 = taskMapperContext.getDeciderService()
.getTasksToBeScheduled(workflowInstance, wft, retryCount);
tasksToBeScheduled.addAll(tasks2);
}
return tasksToBeScheduled;

总的来说,分支(SWITCH)、并行(FORK)节点本身没有执行逻辑,其通过TaskMapper返回到实际要执行的Task,然后交给Decider Service处理。

重试的实现机制

重试和其延迟时间设置,都是借助任务队列的功能实现的。

重试:将任务重新添加到任务队列

重试的延迟时间:添加到任务队列时设置延迟时间,延迟时间过后,任务才能在队列中被poll出来执行

五 完整性保障机制

由于调度过程中可能会出现因机器重启、网络异常、JVM崩溃等偶发情况,这些会导致的decide过程意外终止,流程执行不完整,展现出如流程一直运行中(实际已经没有在调度),或者其它状态错误等异常现象。

1 WorkflowReconciler

针对这种情况,conductor有一个WorkflowReconciler,会定期尝试decide所有正在运行中的流程,修复流程执行的一致性。此外,它还有一个作用是校验流程超时时间。

2 decideQueue

那么WorkflowReconciler是如何获取到当前运行中的流程呢,答案是decideQueue。

decideQueue和任务队列相同,也是一个具有延迟功能的队列,其存放的是正在执行中的流程的实例id。在任务开始执行时(包括新启动执行、重试执行、恢复执行、重跑执行等),会将实例id push到decideQueue中;在执行结束(成功、失败)时,会从decideQueue中删除实例id。

3 ExecutionLockService

WorkflowReconciler会定期尝试decide所有正在运行中的流程用于超时判断、维护流程一致性。但是流程本身正常执行也会触发decide,如果同一个执行同时触发两个decide,可能会导致状态混乱,执行卡住等问题。

conductor采用了锁来解决这个问题,其提供了单机LocalOnlyLock(基于信号量实现)、redis分布式锁(基于redission实现)、zookeeper分布式锁三种实现。

decide方法中最开始会尝试获取锁,如果获取失败则直接返回。通过锁来保障不会对同一个流程实例并发执行decide。

if (!executionLockService.acquireLock(workflowId)) {
return false;
}

由于锁是可配置的,可能会导致一个误区:单台机器的话不用配置锁。其实单机也是需要配置锁的,因为WorkflowReconciler和流程正常执行会产生冲突,可能会导致偶发的流程状态混乱问题。

原文链接

本文为阿里云原创内容,未经允许不得转载。

开源微服务编排框架:Netflix Conductor的更多相关文章

  1. netflix:Conductor微服务编排引擎

    项目地址: https://github.com/Netflix/conductor Conductor 是 Netflix 受需要运行全球流媒体业务流程的启发,构建的基于云的微服务编排引擎. Con ...

  2. 字节微服务HTTP框架Hertz使用与源码分析|拥抱开源

    一.前言 Hertz[həːts] 是一个 Golang 微服务 HTTP 框架,在设计之初参考了其他开源框架 fasthttp.gin.echo 的优势, 并结合字节跳动内部的需求,使其具有高易用性 ...

  3. 宜信开源|微服务任务调度平台SIA-TASK入手实践

    引言 最近宜信开源微服务任务调度平台SIA-TASK,SIA-TASK属于分布式的任务调度平台,使用起来简单方便,非常容易入手,部署搭建好SIA-TASK任务调度平台之后,编写TASK后配置JOB进行 ...

  4. 「 从0到1学习微服务SpringCloud 」08 构建消息驱动微服务的框架 Spring Cloud Stream

    系列文章(更新ing): 「 从0到1学习微服务SpringCloud 」01 一起来学呀! 「 从0到1学习微服务SpringCloud 」02 Eureka服务注册与发现 「 从0到1学习微服务S ...

  5. IDEA 集成 Docker 插件实现一键远程部署 SpringBoot 应用,无需三方依赖,开源微服务全栈项目有来商城云环境的部署方式

    一. 前言 最近有些童鞋对开源微服务商城项目 youlai-mall 如何部署到线上环境以及项目中 的Dockerfile 文件有疑问,所以写了这篇文章做个答疑以及演示完整的微服务项目发布到线上的流程 ...

  6. SpringBoot 整合 Elastic Stack 最新版本(7.14.1)分布式日志解决方案,开源微服务全栈项目【有来商城】的日志落地实践

    一. 前言 日志对于一个程序的重要程度不用过多的言语修饰,本篇将以实战的方式讲述开源微服务全栈项目 有来商城 是如何整合当下主流日志解决方案 ELK +Filebeat . 话不多说,先看实现的效果图 ...

  7. 基于LadybugFlow的微服务编排(1.SpringBoot集成)

    前言 前面的系列文章里,介绍了ladybugflow的业务可视化的设计以及常见场景的使用方法. 感谢大家对项目的关注. 本篇文章介绍一下基于ladybugflow的微服务编排场景及使用方法. 1. 业 ...

  8. 宜信开源微服务任务调度平台(SIA-TASK)

    背景 无论是互联网应用或者企业级应用,都充斥着大量的批处理任务.常常需要一些任务调度系统帮助开发者解决问题.随着微服务化架构的逐步演进,单体架构逐渐演变为分布式.微服务架构.在此的背景下,很多原先的任 ...

  9. 微服务RPC框架选美

    原文:http://p.primeton.com/articles/59030eeda6f2a40690f03629 1.RPC 框架谁最美? Hello,everybody!说到RPC框架,可能大家 ...

  10. 6种微服务RPC框架,你知道几个?

    开源 RPC 框架有哪些呢? 一类是跟某种特定语言平台绑定的,另一类是与语言无关即跨语言平台的. 跟语言平台绑定的开源 RPC 框架主要有下面几种. Dubbo:国内最早开源的 RPC 框架,由阿里巴 ...

随机推荐

  1. 【STM32F4 HAL】MPU6050食用

    关于MPU6050模块的食用>_<(本人比较菜,写的不好或有错误的地方欢迎大佬指出) 最近学校冬令营发了个MPU6050模块,第一次弄也花了我花了不少时间,于是就把其中一些步骤以及要点简单 ...

  2. 3DCAT实时渲染云在虚拟展会中的应用

    随着互联网技术的不断发展,实时3D可视化技术在日常生活中应用越来越广泛,越来越多的行业开始转向线上.今年受新冠肺炎疫情影响很多展会都无法在线下举办,而3d线上虚拟展会采用了全新的在线展示产品方式,将展 ...

  3. springBoot打war包部署tomcat

    1.修改maven的pom.xml文件 <packaging>war</packaging> 2.排除springboot内嵌的tomcat <dependency> ...

  4. DynamicHead:基于像素级路由机制的动态FPN | NIPS 2020

    论文提出了细粒度动态detection head,能够基于路由机制动态地融合不同FPN层的像素级局部特征进行更好的特征表达.从设计的路由空间来看是一个十分耗时的操作,但是作者设计的高效路由器实际计算十 ...

  5. KingbaseES V8R6 集群运维案例--麒麟系统bug导致sys_monitor.sh无法启动集群

    案例说明: 麒麟信安操作系统,在部署了KingbaseES V8R6集群后,sys_monitor.sh在启动集群时,启动数据库服务失败,导致集群无法正常启动.后连接现场分析发现,此环境只要通过ssh ...

  6. 2024-03-30:用go语言,集团里有 n 名员工,他们可以完成各种各样的工作创造利润, 第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与, 如果成员参与

    2024-03-30:用go语言,集团里有 n 名员工,他们可以完成各种各样的工作创造利润, 第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与, 如果成员参与 ...

  7. sublime text 笔记

    问题: Sublime Text编辑器开启或关闭Vim模式 插件: 使用sublime server启动本地服务器进行调试

  8. 开启 Keep-Alive 可能会导致http 请求偶发失败

    大家好,我是蓝胖子,说起提高http的传输效率,很多人会开启http的Keep-Alive选项,这会http请求能够复用tcp连接,节省了握手的开销.但开启Keep-Alive真的没有问题吗?我们来细 ...

  9. #交互,鸽笼原理#CF1776C Library game

    题目 有一个长度为 \(m\) 的书架,以及 \(n\) 个长度 \(a_1,a_2,\dots,a_n\) Alessia 和 Bernardo 从书架上取书.每次由 Alessia 选择一个之前没 ...

  10. #区间dp,离散#D 弱者对决

    分析 设\(dp[i][j][x]\)表示当前区间为\([i,j]\),最小值为\(x\)的最大总分, 状态转移方程可以用后缀最大值优化到\(O(n^3m)\),主要难点是输出方案 后缀最大值需要记录 ...